Jie Yang , Zisheng Liao , Deepak George , Mokarram Hossain , Xiaohu Yao
{"title":"Incorporation of self-heating effect into a thermo-mechanical coupled constitutive modelling for elastomeric polyurethane","authors":"Jie Yang , Zisheng Liao , Deepak George , Mokarram Hossain , Xiaohu Yao","doi":"10.1016/j.giant.2024.100278","DOIUrl":null,"url":null,"abstract":"<div><p>Elastomeric polyurethane (EPU) is characterised by distinctive mechanical properties, including high toughness, low glass transition temperature, and high impact resistance, that render it indispensable in diverse engineering applications from soft robotics to anti-collision devices. This study presents a thermo-mechanically coupled constitutive model for EPU, systematically incorporating hyperelasticity, viscoelasticity, thermal expansion, and self-heating effect in a thermodynamically consistent manner. Experimental data, obtained from previous studies, are then used for parameter identification and model validation, including iterative updates for temperature parameters considering the self-heating effect. Subsequently, the validated model is integrated into finite element codes, i.e., user subroutine to define a material’s mechanical behaviour (<span>UMAT</span>) based on the commercial finite element software <span>ABAQUS</span>, for the computation of three-dimensional stress-strain states, facilitating the analysis of the structural response to various mechanical loads and boundary conditions. The results obtained from simulations are compared with analytical solutions to confirm the precision of Finite Element Method (FEM) implementation. The self-heating effect is further analysed under different strain rates and temperatures. To validate the engineering significance of the FEM implementation, a plate with a hole structure is also simulated. In conclusion, this research provides a robust tool for engineers and researchers working with soft materials, enhancing their understanding and predictive capabilities, notably addressing the self-heating effect in thermo-mechanical behaviours.</p></div>","PeriodicalId":34151,"journal":{"name":"GIANT","volume":"18 ","pages":"Article 100278"},"PeriodicalIF":5.4000,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666542524000432/pdfft?md5=5603cf554db170a3f50a816f1811e2c8&pid=1-s2.0-S2666542524000432-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"GIANT","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666542524000432","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Elastomeric polyurethane (EPU) is characterised by distinctive mechanical properties, including high toughness, low glass transition temperature, and high impact resistance, that render it indispensable in diverse engineering applications from soft robotics to anti-collision devices. This study presents a thermo-mechanically coupled constitutive model for EPU, systematically incorporating hyperelasticity, viscoelasticity, thermal expansion, and self-heating effect in a thermodynamically consistent manner. Experimental data, obtained from previous studies, are then used for parameter identification and model validation, including iterative updates for temperature parameters considering the self-heating effect. Subsequently, the validated model is integrated into finite element codes, i.e., user subroutine to define a material’s mechanical behaviour (UMAT) based on the commercial finite element software ABAQUS, for the computation of three-dimensional stress-strain states, facilitating the analysis of the structural response to various mechanical loads and boundary conditions. The results obtained from simulations are compared with analytical solutions to confirm the precision of Finite Element Method (FEM) implementation. The self-heating effect is further analysed under different strain rates and temperatures. To validate the engineering significance of the FEM implementation, a plate with a hole structure is also simulated. In conclusion, this research provides a robust tool for engineers and researchers working with soft materials, enhancing their understanding and predictive capabilities, notably addressing the self-heating effect in thermo-mechanical behaviours.
期刊介绍:
Giant is an interdisciplinary title focusing on fundamental and applied macromolecular science spanning all chemistry, physics, biology, and materials aspects of the field in the broadest sense. Key areas covered include macromolecular chemistry, supramolecular assembly, multiscale and multifunctional materials, organic-inorganic hybrid materials, biophysics, biomimetics and surface science. Core topics range from developments in synthesis, characterisation and assembly towards creating uniformly sized precision macromolecules with tailored properties, to the design and assembly of nanostructured materials in multiple dimensions, and further to the study of smart or living designer materials with tuneable multiscale properties.