Yanjie Zhu, Shin Woong Kim, Huiying Li, Matthias C. Rillig
{"title":"Delivery rate alters the effects of tire wear particles on soil microbial activities","authors":"Yanjie Zhu, Shin Woong Kim, Huiying Li, Matthias C. Rillig","doi":"10.1186/s12302-024-00918-5","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Tire wear particles (TWPs) produced by the abrasion between tires and road surfaces have been recognized as an emerging threat to soil health globally in recent years. They can be transported from the road surface to adjacent soil at different delivery rates, with precipitation a main driver underpinning this movement. However, studies typically assume an abrupt exposure of TWPs in their experimental design. In this study, we investigated the impacts of abrupt and gradual delivery of TWPs on soil physicochemical properties and microbial activities. We used two different delivery rates of TWPs (abrupt and gradual) and devised two experimental phases, namely the TWPs-delivery period (phase 1) and the end-of-delivery period (phase 2).</p><h3>Results</h3><p>We found that the gradual TWPs delivery treatments negatively influenced the activity of carbon cycle-related enzymes (β-glucosidase and β-D-1,4-cellobiosidase). Furthermore, the abrupt treatment highly increased the effects on nitrogen cycle-related enzyme activity (β-1,4-N-acetyl-glucosaminidase). In phase 2 (end-of-delivery period), each enzyme activity was returned to a similar level as the control group, and these changes between phases 1 and 2 depended on the prior delivery rates.</p><h3>Conclusion</h3><p>Abruptly and gradually delivered TWPs induce different responses to soil microbial activities. Our findings imply that the delivery rate of TWPs could be a key factor changing the effects of TWPs, further enhancing our understanding of the ecological impacts of TWPs.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":546,"journal":{"name":"Environmental Sciences Europe","volume":null,"pages":null},"PeriodicalIF":6.0000,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://enveurope.springeropen.com/counter/pdf/10.1186/s12302-024-00918-5","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Sciences Europe","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1186/s12302-024-00918-5","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Background
Tire wear particles (TWPs) produced by the abrasion between tires and road surfaces have been recognized as an emerging threat to soil health globally in recent years. They can be transported from the road surface to adjacent soil at different delivery rates, with precipitation a main driver underpinning this movement. However, studies typically assume an abrupt exposure of TWPs in their experimental design. In this study, we investigated the impacts of abrupt and gradual delivery of TWPs on soil physicochemical properties and microbial activities. We used two different delivery rates of TWPs (abrupt and gradual) and devised two experimental phases, namely the TWPs-delivery period (phase 1) and the end-of-delivery period (phase 2).
Results
We found that the gradual TWPs delivery treatments negatively influenced the activity of carbon cycle-related enzymes (β-glucosidase and β-D-1,4-cellobiosidase). Furthermore, the abrupt treatment highly increased the effects on nitrogen cycle-related enzyme activity (β-1,4-N-acetyl-glucosaminidase). In phase 2 (end-of-delivery period), each enzyme activity was returned to a similar level as the control group, and these changes between phases 1 and 2 depended on the prior delivery rates.
Conclusion
Abruptly and gradually delivered TWPs induce different responses to soil microbial activities. Our findings imply that the delivery rate of TWPs could be a key factor changing the effects of TWPs, further enhancing our understanding of the ecological impacts of TWPs.
期刊介绍:
ESEU is an international journal, focusing primarily on Europe, with a broad scope covering all aspects of environmental sciences, including the main topic regulation.
ESEU will discuss the entanglement between environmental sciences and regulation because, in recent years, there have been misunderstandings and even disagreement between stakeholders in these two areas. ESEU will help to improve the comprehension of issues between environmental sciences and regulation.
ESEU will be an outlet from the German-speaking (DACH) countries to Europe and an inlet from Europe to the DACH countries regarding environmental sciences and regulation.
Moreover, ESEU will facilitate the exchange of ideas and interaction between Europe and the DACH countries regarding environmental regulatory issues.
Although Europe is at the center of ESEU, the journal will not exclude the rest of the world, because regulatory issues pertaining to environmental sciences can be fully seen only from a global perspective.