Fluorescent small molecule donors

IF 40.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Chemical Society Reviews Pub Date : 2024-05-14 DOI:10.1039/D3CS00124E
Guang Chen, Jing Yu, Luling Wu, Xinrui Ji, Jie Xu, Chao Wang, Siyue Ma, Qing Miao, Linlin Wang, Chen Wang, Simon E. Lewis, Yanfeng Yue, Zhe Sun, Yuxia Liu, Bo Tang and Tony D. James
{"title":"Fluorescent small molecule donors","authors":"Guang Chen, Jing Yu, Luling Wu, Xinrui Ji, Jie Xu, Chao Wang, Siyue Ma, Qing Miao, Linlin Wang, Chen Wang, Simon E. Lewis, Yanfeng Yue, Zhe Sun, Yuxia Liu, Bo Tang and Tony D. James","doi":"10.1039/D3CS00124E","DOIUrl":null,"url":null,"abstract":"<p >Small molecule donors (SMDs) play subtle roles in the signaling mechanism and disease treatments. While many excellent SMDs have been developed, dosage control, targeted delivery, spatiotemporal feedback, as well as the efficiency evaluation of small molecules are still key challenges. Accordingly, fluorescent small molecule donors (FSMDs) have emerged to meet these challenges. FSMDs enable controllable release and non-invasive real-time monitoring, providing significant advantages for drug development and clinical diagnosis. Integration of FSMDs with chemotherapeutic, photodynamic or photothermal properties can take full advantage of each mode to enhance therapeutic efficacy. Given the remarkable properties and the thriving development of FSMDs, we believe a review is needed to summarize the design, triggering strategies and tracking mechanisms of FSMDs. With this review, we compiled FSMDs for most small molecules (nitric oxide, carbon monoxide, hydrogen sulfide, sulfur dioxide, reactive oxygen species and formaldehyde), and discuss recent progress concerning their molecular design, structural classification, mechanisms of generation, triggered release, structure–activity relationships, and the fluorescence response mechanism. Firstly, from the large number of fluorescent small molecular donors available, we have organized the common structures for producing different types of small molecules, providing a general strategy for the development of FSMDs. Secondly, we have classified FSMDs in terms of the respective donor types and fluorophore structures. Thirdly, we discuss the mechanisms and factors associated with the controlled release of small molecules and the regulation of the fluorescence responses, from which universal guidelines for optical properties and structure rearrangement were established, mainly involving light-controlled, enzyme-activated, reactive oxygen species-triggered, biothiol-triggered, single-electron reduction, click chemistry, and other triggering mechanisms. Fourthly, representative applications of FSMDs for trackable release, and evaluation monitoring, as well as for visible <em>in vivo</em> treatment are outlined, to illustrate the potential of FSMDs in drug screening and precision medicine. Finally, we discuss the opportunities and remaining challenges for the development of FSMDs for practical and clinical applications, which we anticipate will stimulate the attention of researchers in the diverse fields of chemistry, pharmacology, chemical biology and clinical chemistry. With this review, we hope to impart new understanding thereby enabling the rapid development of the next generation of FSMDs.</p>","PeriodicalId":68,"journal":{"name":"Chemical Society Reviews","volume":null,"pages":null},"PeriodicalIF":40.4000,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/cs/d3cs00124e?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Society Reviews","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/cs/d3cs00124e","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Small molecule donors (SMDs) play subtle roles in the signaling mechanism and disease treatments. While many excellent SMDs have been developed, dosage control, targeted delivery, spatiotemporal feedback, as well as the efficiency evaluation of small molecules are still key challenges. Accordingly, fluorescent small molecule donors (FSMDs) have emerged to meet these challenges. FSMDs enable controllable release and non-invasive real-time monitoring, providing significant advantages for drug development and clinical diagnosis. Integration of FSMDs with chemotherapeutic, photodynamic or photothermal properties can take full advantage of each mode to enhance therapeutic efficacy. Given the remarkable properties and the thriving development of FSMDs, we believe a review is needed to summarize the design, triggering strategies and tracking mechanisms of FSMDs. With this review, we compiled FSMDs for most small molecules (nitric oxide, carbon monoxide, hydrogen sulfide, sulfur dioxide, reactive oxygen species and formaldehyde), and discuss recent progress concerning their molecular design, structural classification, mechanisms of generation, triggered release, structure–activity relationships, and the fluorescence response mechanism. Firstly, from the large number of fluorescent small molecular donors available, we have organized the common structures for producing different types of small molecules, providing a general strategy for the development of FSMDs. Secondly, we have classified FSMDs in terms of the respective donor types and fluorophore structures. Thirdly, we discuss the mechanisms and factors associated with the controlled release of small molecules and the regulation of the fluorescence responses, from which universal guidelines for optical properties and structure rearrangement were established, mainly involving light-controlled, enzyme-activated, reactive oxygen species-triggered, biothiol-triggered, single-electron reduction, click chemistry, and other triggering mechanisms. Fourthly, representative applications of FSMDs for trackable release, and evaluation monitoring, as well as for visible in vivo treatment are outlined, to illustrate the potential of FSMDs in drug screening and precision medicine. Finally, we discuss the opportunities and remaining challenges for the development of FSMDs for practical and clinical applications, which we anticipate will stimulate the attention of researchers in the diverse fields of chemistry, pharmacology, chemical biology and clinical chemistry. With this review, we hope to impart new understanding thereby enabling the rapid development of the next generation of FSMDs.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
荧光小分子供体
小分子供体(SMDs)在信号传导机制和疾病治疗中发挥着微妙的作用。虽然已经开发出许多优秀的小分子供体,但剂量控制、靶向递送、时空反馈以及小分子的效率评估仍是关键挑战。因此,荧光小分子供体(FSMD)应运而生,以应对这些挑战。荧光小分子供体可实现可控释放和无创实时监测,为药物开发和临床诊断提供了显著优势。整合具有化疗、光动力或光热特性的 FSMDs 可以充分利用每种模式的优势来提高疗效。鉴于 FSMD 的显著特性和蓬勃发展,我们认为有必要对 FSMD 的设计、触发策略和跟踪机制进行综述。通过这篇综述,我们汇编了大多数小分子(一氧化氮、一氧化碳、硫化氢、二氧化硫、活性氧和甲醛)的 FSMDs,并讨论了其分子设计、结构分类、生成机制、触发释放、结构-活性关系和荧光响应机制等方面的最新进展。首先,从现有的大量荧光小分子供体中,我们整理出了产生不同类型小分子的常见结构,为开发 FSMDs 提供了一般策略。其次,我们根据各自的供体类型和荧光团结构对 FSMD 进行了分类。第三,我们讨论了与小分子控释和荧光反应调控相关的机制和因素,并由此建立了光学特性和结构重排的通用准则,主要涉及光控、酶促、活性氧触发、生物硫醇触发、单电子还原、点击化学和其他触发机制。第四,我们概述了 FSMD 在可追踪释放、评估监测以及可见体内治疗方面的代表性应用,以说明 FSMD 在药物筛选和精准医疗方面的潜力。最后,我们讨论了开发用于实际和临床应用的 FSMDs 所面临的机遇和挑战,预计这将引起化学、药理学、化学生物学和临床化学等不同领域研究人员的关注。我们希望通过这篇综述传授新的认识,从而推动下一代 FSMD 的快速发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Chemical Society Reviews
Chemical Society Reviews 化学-化学综合
CiteScore
80.80
自引率
1.10%
发文量
345
审稿时长
6.0 months
期刊介绍: Chemical Society Reviews is published by: Royal Society of Chemistry. Focus: Review articles on topics of current interest in chemistry; Predecessors: Quarterly Reviews, Chemical Society (1947–1971); Current title: Since 1971; Impact factor: 60.615 (2021); Themed issues: Occasional themed issues on new and emerging areas of research in the chemical sciences
期刊最新文献
Catalytic asymmetric synthesis of 1,2-diamines. Navigating the landscape of enzyme design: from molecular simulations to machine learning. Functionalized 2D membranes for separations at the 1-nm scale. Nature-inspired adhesive systems. Nucleic acid-based wearable and implantable electrochemical sensors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1