{"title":"Microbial ammonium immobilization promoted soil nitrogen retention under high moisture conditions in intensively managed fluvo-aquic soils","authors":"Hui Wang, Zhifeng Yan, Zengming Chen, Xiaotong Song, Jinbo Zhang, Si-Liang Li, Christoph Müller, Xiaotang Ju, Xia Zhu-Barker","doi":"10.1007/s00374-024-01831-y","DOIUrl":null,"url":null,"abstract":"<p>Quantifying the gross rates of individual nitrogen (N) processes is critical for understanding the availability, retention and loss of N and its eco-environmental impacts in agricultural ecosystems. Here, we carried out a <sup>15</sup>N tracing study to quantify the influence of soil moisture on the gross rates of ten different N processes in two intensively managed fluvo-aquic soils. Results showed that the gross N mineralization rates were insensitive to changes in soil moisture, ranging from 40 to 120% water-filled pore space (WFPS). Contrarily, the gross ammonium (NH<sub>4</sub><sup>+</sup>) immobilization rates increased exponentially with elevated soil moisture. Specifically, under high soil moisture conditions (i.e., 90–120%WFPS), the gross NH<sub>4</sub><sup>+</sup> immobilization rates (4.04 ± 0.83 and 0.88 ± 0.28 mg N kg<sup>− 1</sup>d<sup>− 1</sup> for the two soils, respectively) were nearly four times higher than those under medium or low moisture conditions (i.e., 40–80%WFPS). Meanwhile, the high WFPS reduced the gross autotrophic nitrification rates (5.92 ± 2.15 and 12.31 ± 3.83 mg-N kg<sup>− 1</sup>d<sup>− 1</sup> for the two soils, respectively) to only one-third to one-half of those that were observed under medium or low WFPS. By contrast, the rates of nitrate (NO<sub>3</sub><sup>−</sup>) immobilization increased in one soil whereas they decreased in another under high moisture conditions, and the other N processes (including heterotrophic nitrification and dissimilatory nitrate reduction to ammonium (DNRA)) were negligible throughout the different WFPS. Overall, our results suggest that under highly saturated conditions, the increase in microbial NH<sub>4</sub><sup>+</sup> immobilization and decrease in autotrophic nitrification are critical for N retention in the fluvo-aquic soils. These findings provide valuable insights into potential alterations in soil N retention or loss under future climate change scenarios, where more intensive irrigation and extreme rainfall events are anticipated.</p>","PeriodicalId":9210,"journal":{"name":"Biology and Fertility of Soils","volume":"08 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biology and Fertility of Soils","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s00374-024-01831-y","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Quantifying the gross rates of individual nitrogen (N) processes is critical for understanding the availability, retention and loss of N and its eco-environmental impacts in agricultural ecosystems. Here, we carried out a 15N tracing study to quantify the influence of soil moisture on the gross rates of ten different N processes in two intensively managed fluvo-aquic soils. Results showed that the gross N mineralization rates were insensitive to changes in soil moisture, ranging from 40 to 120% water-filled pore space (WFPS). Contrarily, the gross ammonium (NH4+) immobilization rates increased exponentially with elevated soil moisture. Specifically, under high soil moisture conditions (i.e., 90–120%WFPS), the gross NH4+ immobilization rates (4.04 ± 0.83 and 0.88 ± 0.28 mg N kg− 1d− 1 for the two soils, respectively) were nearly four times higher than those under medium or low moisture conditions (i.e., 40–80%WFPS). Meanwhile, the high WFPS reduced the gross autotrophic nitrification rates (5.92 ± 2.15 and 12.31 ± 3.83 mg-N kg− 1d− 1 for the two soils, respectively) to only one-third to one-half of those that were observed under medium or low WFPS. By contrast, the rates of nitrate (NO3−) immobilization increased in one soil whereas they decreased in another under high moisture conditions, and the other N processes (including heterotrophic nitrification and dissimilatory nitrate reduction to ammonium (DNRA)) were negligible throughout the different WFPS. Overall, our results suggest that under highly saturated conditions, the increase in microbial NH4+ immobilization and decrease in autotrophic nitrification are critical for N retention in the fluvo-aquic soils. These findings provide valuable insights into potential alterations in soil N retention or loss under future climate change scenarios, where more intensive irrigation and extreme rainfall events are anticipated.
期刊介绍:
Biology and Fertility of Soils publishes in English original papers, reviews and short communications on all fundamental and applied aspects of biology – microflora and microfauna - and fertility of soils. It offers a forum for research aimed at broadening the understanding of biological functions, processes and interactions in soils, particularly concerning the increasing demands of agriculture, deforestation and industrialization. The journal includes articles on techniques and methods that evaluate processes, biogeochemical interactions and ecological stresses, and sometimes presents special issues on relevant topics.