Defect-enabling zirconium-based metal–organic frameworks for energy and environmental remediation applications

IF 40.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Chemical Society Reviews Pub Date : 2024-05-14 DOI:10.1039/D3CS01057K
Saba Daliran, Ali Reza Oveisi, Chung-Wei Kung, Unal Sen, Amarajothi Dhakshinamoorthy, Cheng-Hsun Chuang, Mostafa Khajeh, Mustafa Erkartal and Joseph T. Hupp
{"title":"Defect-enabling zirconium-based metal–organic frameworks for energy and environmental remediation applications","authors":"Saba Daliran, Ali Reza Oveisi, Chung-Wei Kung, Unal Sen, Amarajothi Dhakshinamoorthy, Cheng-Hsun Chuang, Mostafa Khajeh, Mustafa Erkartal and Joseph T. Hupp","doi":"10.1039/D3CS01057K","DOIUrl":null,"url":null,"abstract":"<p >This comprehensive review explores the diverse applications of defective zirconium-based metal–organic frameworks (Zr-MOFs) in energy and environmental remediation. Zr-MOFs have gained significant attention due to their unique properties, and deliberate introduction of defects further enhances their functionality. The review encompasses several areas where defective Zr-MOFs exhibit promise, including environmental remediation, detoxification of chemical warfare agents, photocatalytic energy conversions, and electrochemical applications. Defects play a pivotal role by creating open sites within the framework, facilitating effective adsorption and remediation of pollutants. They also contribute to the catalytic activity of Zr-MOFs, enabling efficient energy conversion processes such as hydrogen production and CO<small><sub>2</sub></small> reduction. The review underscores the importance of defect manipulation, including control over their distribution and type, to optimize the performance of Zr-MOFs. Through tailored defect engineering and precise selection of functional groups, researchers can enhance the selectivity and efficiency of Zr-MOFs for specific applications. Additionally, pore size manipulation influences the adsorption capacity and transport properties of Zr-MOFs, further expanding their potential in environmental remediation and energy conversion. Defective Zr-MOFs exhibit remarkable stability and synthetic versatility, making them suitable for diverse environmental conditions and allowing for the introduction of missing linkers, cluster defects, or post-synthetic modifications to precisely tailor their properties. Overall, this review highlights the promising prospects of defective Zr-MOFs in addressing energy and environmental challenges, positioning them as versatile tools for sustainable solutions and paving the way for advancements in various sectors toward a cleaner and more sustainable future.</p>","PeriodicalId":68,"journal":{"name":"Chemical Society Reviews","volume":null,"pages":null},"PeriodicalIF":40.4000,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/cs/d3cs01057k?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Society Reviews","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/cs/d3cs01057k","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This comprehensive review explores the diverse applications of defective zirconium-based metal–organic frameworks (Zr-MOFs) in energy and environmental remediation. Zr-MOFs have gained significant attention due to their unique properties, and deliberate introduction of defects further enhances their functionality. The review encompasses several areas where defective Zr-MOFs exhibit promise, including environmental remediation, detoxification of chemical warfare agents, photocatalytic energy conversions, and electrochemical applications. Defects play a pivotal role by creating open sites within the framework, facilitating effective adsorption and remediation of pollutants. They also contribute to the catalytic activity of Zr-MOFs, enabling efficient energy conversion processes such as hydrogen production and CO2 reduction. The review underscores the importance of defect manipulation, including control over their distribution and type, to optimize the performance of Zr-MOFs. Through tailored defect engineering and precise selection of functional groups, researchers can enhance the selectivity and efficiency of Zr-MOFs for specific applications. Additionally, pore size manipulation influences the adsorption capacity and transport properties of Zr-MOFs, further expanding their potential in environmental remediation and energy conversion. Defective Zr-MOFs exhibit remarkable stability and synthetic versatility, making them suitable for diverse environmental conditions and allowing for the introduction of missing linkers, cluster defects, or post-synthetic modifications to precisely tailor their properties. Overall, this review highlights the promising prospects of defective Zr-MOFs in addressing energy and environmental challenges, positioning them as versatile tools for sustainable solutions and paving the way for advancements in various sectors toward a cleaner and more sustainable future.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于能源和环境修复应用的缺陷赋能锆基金属有机框架
这篇综述探讨了有缺陷的锆基金属有机框架(Zr-MOFs)在能源和环境修复方面的各种应用。Zr-MOFs 因其独特的性能而备受关注,而故意引入缺陷则可进一步增强其功能。本综述涵盖了有缺陷的 Zr-MOFs 大有可为的几个领域,包括环境修复、化学战剂解毒、光催化能量转换和电化学应用。缺陷通过在框架内形成开放位点,促进污染物的有效吸附和修复,从而发挥关键作用。它们还有助于提高 Zr-MOFs 的催化活性,使制氢和二氧化碳还原等高效能源转换过程成为可能。综述强调了缺陷处理(包括控制其分布和类型)对优化 Zr-MOFs 性能的重要性。通过定制缺陷工程和精确选择官能团,研究人员可以提高 Zr-MOFs 在特定应用中的选择性和效率。此外,孔隙大小的控制还能影响 Zr-MOFs 的吸附能力和传输特性,从而进一步拓展其在环境修复和能源转换方面的潜力。缺陷 Zr-MOFs 具有显著的稳定性和合成多样性,使其适用于各种环境条件,并允许引入缺失连接体、团簇缺陷或后合成修饰,以精确定制其特性。总之,本综述强调了有缺陷 Zr-MOFs 在应对能源和环境挑战方面的广阔前景,将其定位为可持续解决方案的多功能工具,并为各行业迈向更清洁、更可持续的未来铺平道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Chemical Society Reviews
Chemical Society Reviews 化学-化学综合
CiteScore
80.80
自引率
1.10%
发文量
345
审稿时长
6.0 months
期刊介绍: Chemical Society Reviews is published by: Royal Society of Chemistry. Focus: Review articles on topics of current interest in chemistry; Predecessors: Quarterly Reviews, Chemical Society (1947–1971); Current title: Since 1971; Impact factor: 60.615 (2021); Themed issues: Occasional themed issues on new and emerging areas of research in the chemical sciences
期刊最新文献
From sugars to aliphatic amines: as sweet as it sounds? Production and applications of bio-based aliphatic amines. Metal-phenolic network composites: from fundamentals to applications. Reactive oxygen species-mediated organic long-persistent luminophores light up biomedicine: from two-component separated nano-systems to integrated uni-luminophores. From cyclotrons to chromatography and beyond: a guide to the production and purification of theranostic radiometals. Metal-support interactions in metal oxide-supported atomic, cluster, and nanoparticle catalysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1