A selectivity switch for CO2 electroreduction by continuously tuned semi-coherent interface

IF 19.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Chem Pub Date : 2024-09-12 DOI:10.1016/j.chempr.2024.04.009
{"title":"A selectivity switch for CO2 electroreduction by continuously tuned semi-coherent interface","authors":"","doi":"10.1016/j.chempr.2024.04.009","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>Mass production of Au–Cu-based catalysts with tailored selectivity<span> is a complex and challenging task. We report a semi-affinity strategy to realize the synthesis of Au–Cu Janus nanocrystals with continuously tuned interfaces (from dimer, Janus, acorn-like Janus, to core-shell) based on Au </span></span>nanosphere<span><span> seeds. We highlight the role of interfacial strain due to a large lattice mismatch<span> in growth control. The systematic electrochemical evaluation shows that the interfacial Cu oxide state, ∗CO coverage, and intermediate adsorption configuration can be well tuned by tailoring the Janus </span></span>nanostructure. Optimized Au–Cu Janus catalyst reaches an efficiency of up to 80.0% for C</span></span><sub>2+</sub><span> product with a partial current density of 466.1 mA cm</span><sup>−2</sup><span>. The reaction products can be selectively switched from methanol (dimer) to ethanol (Janus) and further to ethylene (acorn-like Janus) by increasing the interface area of the Au–Cu heterostructures. The catalytic mechanisms are unraveled by </span><span><em>operando</em></span><span> surface-enhanced Raman spectroscopy (SERS) analysis and density functional theory calculations.</span></p></div>","PeriodicalId":268,"journal":{"name":"Chem","volume":null,"pages":null},"PeriodicalIF":19.1000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chem","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2451929424001736","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Mass production of Au–Cu-based catalysts with tailored selectivity is a complex and challenging task. We report a semi-affinity strategy to realize the synthesis of Au–Cu Janus nanocrystals with continuously tuned interfaces (from dimer, Janus, acorn-like Janus, to core-shell) based on Au nanosphere seeds. We highlight the role of interfacial strain due to a large lattice mismatch in growth control. The systematic electrochemical evaluation shows that the interfacial Cu oxide state, ∗CO coverage, and intermediate adsorption configuration can be well tuned by tailoring the Janus nanostructure. Optimized Au–Cu Janus catalyst reaches an efficiency of up to 80.0% for C2+ product with a partial current density of 466.1 mA cm−2. The reaction products can be selectively switched from methanol (dimer) to ethanol (Janus) and further to ethylene (acorn-like Janus) by increasing the interface area of the Au–Cu heterostructures. The catalytic mechanisms are unraveled by operando surface-enhanced Raman spectroscopy (SERS) analysis and density functional theory calculations.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过连续调谐半相干界面实现二氧化碳电还原的选择性开关
量产具有定制选择性的金-铜基催化剂是一项复杂而具有挑战性的任务。我们报告了一种半亲和性策略,以金纳米球种子为基础,实现了具有不断调整的界面(从二聚体、Janus、橡树果状 Janus 到核壳状)的金-铜 Janus 纳米晶体的合成。我们强调了大晶格失配导致的界面应变在生长控制中的作用。系统电化学评估表明,通过定制 Janus 纳米结构,可以很好地调整界面氧化铜状态、∗CO 覆盖率和中间吸附构型。优化后的 Au-Cu Janus 催化剂在部分电流密度为 466.1 mA cm-2 的情况下,C2+ 产物的效率高达 80.0%。通过增大金-铜异质结构的界面面积,反应产物可选择性地从甲醇(二聚体)转化为乙醇(Janus),并进一步转化为乙烯(橡树醛样 Janus)。通过操作表面增强拉曼光谱(SERS)分析和密度泛函理论计算,揭示了催化机理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Chem
Chem Environmental Science-Environmental Chemistry
CiteScore
32.40
自引率
1.30%
发文量
281
期刊介绍: Chem, affiliated with Cell as its sister journal, serves as a platform for groundbreaking research and illustrates how fundamental inquiries in chemistry and its related fields can contribute to addressing future global challenges. It was established in 2016, and is currently edited by Robert Eagling.
期刊最新文献
One-pot catalytic conversion of polyethylene wastes to gasoline through a dual-catalyst system New light on proton transfer: Spectral and kinetic signature of a transient Eigen complex Sequence-defined main-chain photoswitching macromolecules with odd-even effect-controlled properties Direct production of o-xylene from six-component BTEXs using a channel-pore interconnected metal-organic framework In situ energy dispersive X-ray diffraction achieved in twin screw extrusion
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1