{"title":"A selectivity switch for CO2 electroreduction by continuously tuned semi-coherent interface","authors":"","doi":"10.1016/j.chempr.2024.04.009","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>Mass production of Au–Cu-based catalysts with tailored selectivity<span> is a complex and challenging task. We report a semi-affinity strategy to realize the synthesis of Au–Cu Janus nanocrystals with continuously tuned interfaces (from dimer, Janus, acorn-like Janus, to core-shell) based on Au </span></span>nanosphere<span><span> seeds. We highlight the role of interfacial strain due to a large lattice mismatch<span> in growth control. The systematic electrochemical evaluation shows that the interfacial Cu oxide state, ∗CO coverage, and intermediate adsorption configuration can be well tuned by tailoring the Janus </span></span>nanostructure. Optimized Au–Cu Janus catalyst reaches an efficiency of up to 80.0% for C</span></span><sub>2+</sub><span> product with a partial current density of 466.1 mA cm</span><sup>−2</sup><span>. The reaction products can be selectively switched from methanol (dimer) to ethanol (Janus) and further to ethylene (acorn-like Janus) by increasing the interface area of the Au–Cu heterostructures. The catalytic mechanisms are unraveled by </span><span><em>operando</em></span><span> surface-enhanced Raman spectroscopy (SERS) analysis and density functional theory calculations.</span></p></div>","PeriodicalId":268,"journal":{"name":"Chem","volume":null,"pages":null},"PeriodicalIF":19.1000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chem","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2451929424001736","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Mass production of Au–Cu-based catalysts with tailored selectivity is a complex and challenging task. We report a semi-affinity strategy to realize the synthesis of Au–Cu Janus nanocrystals with continuously tuned interfaces (from dimer, Janus, acorn-like Janus, to core-shell) based on Au nanosphere seeds. We highlight the role of interfacial strain due to a large lattice mismatch in growth control. The systematic electrochemical evaluation shows that the interfacial Cu oxide state, ∗CO coverage, and intermediate adsorption configuration can be well tuned by tailoring the Janus nanostructure. Optimized Au–Cu Janus catalyst reaches an efficiency of up to 80.0% for C2+ product with a partial current density of 466.1 mA cm−2. The reaction products can be selectively switched from methanol (dimer) to ethanol (Janus) and further to ethylene (acorn-like Janus) by increasing the interface area of the Au–Cu heterostructures. The catalytic mechanisms are unraveled by operando surface-enhanced Raman spectroscopy (SERS) analysis and density functional theory calculations.
期刊介绍:
Chem, affiliated with Cell as its sister journal, serves as a platform for groundbreaking research and illustrates how fundamental inquiries in chemistry and its related fields can contribute to addressing future global challenges. It was established in 2016, and is currently edited by Robert Eagling.