The AMSlide for noninvasive time-lapse imaging of arbuscular mycorrhizal symbiosis.

IF 1.5 4区 工程技术 Q3 MICROSCOPY Journal of microscopy Pub Date : 2024-05-15 DOI:10.1111/jmi.13313
Jennifer McGaley, Ben Schneider, Uta Paszkowski
{"title":"The AMSlide for noninvasive time-lapse imaging of arbuscular mycorrhizal symbiosis.","authors":"Jennifer McGaley, Ben Schneider, Uta Paszkowski","doi":"10.1111/jmi.13313","DOIUrl":null,"url":null,"abstract":"<p><p>Arbuscular mycorrhizal (AM) symbiosis, the nutritional partnership between AM fungi and most plant species, is globally ubiquitous and of great ecological and agricultural importance. Studying the processes of AM symbiosis is confounded by its highly spatiotemporally dynamic nature. While microscopy methods exist to probe the spatial side of this plant-fungal interaction, the temporal side remains more challenging, as reliable deep-tissue time-lapse imaging requires both symbiotic partners to remain undisturbed over prolonged time periods. Here, we introduce the AMSlide: a noninvasive, high-resolution, live-imaging system optimised for AM symbiosis research. We demonstrate the AMSlide's applications in confocal microscopy of mycorrhizal roots, from whole colonisation zones to subcellular structures, over timeframes from minutes to weeks. The AMSlide's versatility for different microscope set-ups, imaging techniques, and plant and fungal species is also outlined. It is hoped that the AMSlide will be applied in future research to fill in the temporal blanks in our understanding of AM symbiosis, as well as broader root and rhizosphere processes.</p>","PeriodicalId":16484,"journal":{"name":"Journal of microscopy","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of microscopy","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1111/jmi.13313","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROSCOPY","Score":null,"Total":0}
引用次数: 0

Abstract

Arbuscular mycorrhizal (AM) symbiosis, the nutritional partnership between AM fungi and most plant species, is globally ubiquitous and of great ecological and agricultural importance. Studying the processes of AM symbiosis is confounded by its highly spatiotemporally dynamic nature. While microscopy methods exist to probe the spatial side of this plant-fungal interaction, the temporal side remains more challenging, as reliable deep-tissue time-lapse imaging requires both symbiotic partners to remain undisturbed over prolonged time periods. Here, we introduce the AMSlide: a noninvasive, high-resolution, live-imaging system optimised for AM symbiosis research. We demonstrate the AMSlide's applications in confocal microscopy of mycorrhizal roots, from whole colonisation zones to subcellular structures, over timeframes from minutes to weeks. The AMSlide's versatility for different microscope set-ups, imaging techniques, and plant and fungal species is also outlined. It is hoped that the AMSlide will be applied in future research to fill in the temporal blanks in our understanding of AM symbiosis, as well as broader root and rhizosphere processes.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于对树根菌根共生进行无创延时成像的 AMSlide。
丛枝菌根(AM)共生是 AM 真菌与大多数植物物种之间的营养合作关系,在全球无处不在,具有重要的生态和农业意义。研究 AM 共生的过程受到其高度时空动态性质的困扰。虽然已有显微镜方法可以探测这种植物-真菌相互作用的空间方面,但时间方面仍然更具挑战性,因为可靠的深组织延时成像要求共生双方在长时间内保持不受干扰。在这里,我们介绍 AMSlide:一种非侵入式、高分辨率、实时成像系统,是 AM 共生研究的最佳选择。我们展示了 AMSlide 在菌根共聚焦显微镜中的应用,从整个定植区到亚细胞结构,时间范围从几分钟到几周不等。此外,还概述了 AMSlide 在不同显微镜设置、成像技术以及植物和真菌物种方面的多功能性。希望 AMSlide 能在未来的研究中得到应用,以填补我们对 AM 共生以及更广泛的根部和根圈过程的认识上的时间空白。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of microscopy
Journal of microscopy 工程技术-显微镜技术
CiteScore
4.30
自引率
5.00%
发文量
83
审稿时长
1 months
期刊介绍: The Journal of Microscopy is the oldest journal dedicated to the science of microscopy and the only peer-reviewed publication of the Royal Microscopical Society. It publishes papers that report on the very latest developments in microscopy such as advances in microscopy techniques or novel areas of application. The Journal does not seek to publish routine applications of microscopy or specimen preparation even though the submission may otherwise have a high scientific merit. The scope covers research in the physical and biological sciences and covers imaging methods using light, electrons, X-rays and other radiations as well as atomic force and near field techniques. Interdisciplinary research is welcome. Papers pertaining to microscopy are also welcomed on optical theory, spectroscopy, novel specimen preparation and manipulation methods and image recording, processing and analysis including dynamic analysis of living specimens. Publication types include full papers, hot topic fast tracked communications and review articles. Authors considering submitting a review article should contact the editorial office first.
期刊最新文献
TOC - Issue Information Use of Melinex film for flat embedding tissue sections in LR White. Setting up an institutional OMERO environment for bioimage data: Perspectives from both facility staff and users The mutual influence of microtubules and the cortical ER on their coordinated organisation. Correction to “Image quality evaluation for FIB-SEM images”
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1