首页 > 最新文献

Journal of microscopy最新文献

英文 中文
Geometric characteristics of stromal collagen fibres in breast cancer using differential interference contrast microscopy. 利用微分干涉对比显微镜观察乳腺癌基质胶原纤维的几何特征。
IF 1.5 4区 工程技术 Q3 MICROSCOPY Pub Date : 2025-02-01 Epub Date: 2024-10-03 DOI: 10.1111/jmi.13361
Suzan F Ghannam, Catrin Sian Rutland, Cinzia Allegrucci, Melissa L Mather, Mansour Alsaleem, Thomas D Bateman-Price, Rodhan Patke, Graham Ball, Nigel P Mongan, Emad Rakha

Breast cancer (BC) is characterised by a high level of heterogeneity, which is influenced by the interaction of neoplastic cells with the tumour microenvironment. The diagnostic and prognostic role of the tumour stroma in BC remains to be defined. Differential interference contrast (DIC) microscopy is a label-free imaging technique well suited to visualise weak optical phase objects such as cells and tissue. This study aims to compare stromal collagen fibre characteristics between in situ and invasive breast tumours using DIC microscopy and investigate the prognostic value of collagen parameters in BC. A tissue microarray was generated from 200 cases, comprising ductal carcinoma in situ (DCIS; n = 100) and invasive tumours (n = 100) with an extra 50 (25 invasive BC and 25 DCIS) cases for validation was utilised. Two sections per case were used: one stained with haematoxylin and eosin (H&E) stain for histological review and one unstained for examination using DIC microscopy. Collagen fibre parameters including orientation angle, fibre alignment, fibre density, fibre width, fibre length and fibre straightness were measured. Collagen fibre density was higher in the stroma of invasive BC (161.68 ± 11.2 fibre/µm2) compared to DCIS (p < 0.0001). The collagen fibres were thinner (13.78 ± 1.08 µm), straighter (0.96 ± 0.006, on a scale of 0-1), more disorganised (95.07° ± 11.39°) and less aligned (0.20 ± 0.09, on a 0-1 scale) in the invasive BC compared to DCIS (all p < 0.0001). A model considering these features was developed that could distinguish between DCIS and invasive tumours with 94% accuracy. There were strong correlations between fibre characteristics and clinicopathological parameters in both groups. A statistically significant association between fibre characteristics and patients' outcomes (breast cancer specific survival, and recurrence free survival) was observed in the invasive group but not in DCIS. Although invasive BC and DCIS were both associated with stromal reaction, the structural features of collagen fibres were significantly different in the two disease stages. Analysis of the stroma fibre characteristics in the preoperative core biopsy specimen may help to differentiate pure DCIS from those associated with invasion.

乳腺癌(BC)具有高度异质性的特点,这受到肿瘤细胞与肿瘤微环境相互作用的影响。肿瘤基质对乳腺癌的诊断和预后作用仍有待明确。微分干涉对比(DIC)显微镜是一种无标记成像技术,非常适合观察细胞和组织等弱光相物体。本研究旨在利用 DIC 显微镜比较原位乳腺肿瘤和浸润性乳腺肿瘤的基质胶原纤维特征,并研究胶原蛋白参数在 BC 中的预后价值。从 200 个病例中生成了组织微阵列,包括乳腺导管原位癌(DCIS;n = 100)和浸润性肿瘤(n = 100),并利用额外的 50 个病例(25 个浸润性 BC 和 25 个 DCIS)进行验证。每个病例使用两张切片:一张经血黄素和伊红(H&E)染色,用于组织学检查;另一张未经染色,用于 DIC 显微镜检查。测量了胶原纤维参数,包括取向角、纤维排列、纤维密度、纤维宽度、纤维长度和纤维直线度。与 DCIS 相比,浸润性 BC 基质中的胶原纤维密度更高(161.68 ± 11.2 纤维/µm2)(p<0.05)。
{"title":"Geometric characteristics of stromal collagen fibres in breast cancer using differential interference contrast microscopy.","authors":"Suzan F Ghannam, Catrin Sian Rutland, Cinzia Allegrucci, Melissa L Mather, Mansour Alsaleem, Thomas D Bateman-Price, Rodhan Patke, Graham Ball, Nigel P Mongan, Emad Rakha","doi":"10.1111/jmi.13361","DOIUrl":"10.1111/jmi.13361","url":null,"abstract":"<p><p>Breast cancer (BC) is characterised by a high level of heterogeneity, which is influenced by the interaction of neoplastic cells with the tumour microenvironment. The diagnostic and prognostic role of the tumour stroma in BC remains to be defined. Differential interference contrast (DIC) microscopy is a label-free imaging technique well suited to visualise weak optical phase objects such as cells and tissue. This study aims to compare stromal collagen fibre characteristics between in situ and invasive breast tumours using DIC microscopy and investigate the prognostic value of collagen parameters in BC. A tissue microarray was generated from 200 cases, comprising ductal carcinoma in situ (DCIS; n = 100) and invasive tumours (n = 100) with an extra 50 (25 invasive BC and 25 DCIS) cases for validation was utilised. Two sections per case were used: one stained with haematoxylin and eosin (H&E) stain for histological review and one unstained for examination using DIC microscopy. Collagen fibre parameters including orientation angle, fibre alignment, fibre density, fibre width, fibre length and fibre straightness were measured. Collagen fibre density was higher in the stroma of invasive BC (161.68 ± 11.2 fibre/µm<sup>2</sup>) compared to DCIS (p < 0.0001). The collagen fibres were thinner (13.78 ± 1.08 µm), straighter (0.96 ± 0.006, on a scale of 0-1), more disorganised (95.07° ± 11.39°) and less aligned (0.20 ± 0.09, on a 0-1 scale) in the invasive BC compared to DCIS (all p < 0.0001). A model considering these features was developed that could distinguish between DCIS and invasive tumours with 94% accuracy. There were strong correlations between fibre characteristics and clinicopathological parameters in both groups. A statistically significant association between fibre characteristics and patients' outcomes (breast cancer specific survival, and recurrence free survival) was observed in the invasive group but not in DCIS. Although invasive BC and DCIS were both associated with stromal reaction, the structural features of collagen fibres were significantly different in the two disease stages. Analysis of the stroma fibre characteristics in the preoperative core biopsy specimen may help to differentiate pure DCIS from those associated with invasion.</p>","PeriodicalId":16484,"journal":{"name":"Journal of microscopy","volume":" ","pages":"135-152"},"PeriodicalIF":1.5,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11733853/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142365479","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
LiveLattice: Real-time visualisation of tilted light-sheet microscopy data using a memory-efficient transformation algorithm. LiveLattice:使用内存效率高的转换算法实现倾斜光片显微镜数据的实时可视化。
IF 1.5 4区 工程技术 Q3 MICROSCOPY Pub Date : 2025-02-01 Epub Date: 2024-10-03 DOI: 10.1111/jmi.13358
Zichen Wang, Hiroyuki Hakozaki, Gillian McMahon, Marta Medina-Carbonero, Johannes Schöneberg

Light-sheet fluorescence microscopy (LSFM), a prominent fluorescence microscopy technique, offers enhanced temporal resolution for imaging biological samples in four dimensions (4D; x, y, z, time). Some of the most recent implementations, including inverted selective plane illumination microscopy (iSPIM) and lattice light-sheet microscopy (LLSM), move the sample substrate at an oblique angle relative to the detection objective's optical axis. Data from such tilted-sample-scan LSFMs require subsequent deskewing and rotation for proper visualisation and analysis. Such data preprocessing operations currently demand substantial memory allocation and pose significant computational challenges for large 4D dataset. The consequence is prolonged data preprocessing time compared to data acquisition time, which limits the ability for live-viewing the data as it is being captured by the microscope. To enable the fast preprocessing of large light-sheet microscopy datasets without significant hardware demand, we have developed WH-Transform, a memory-efficient transformation algorithm for deskewing and rotating the raw dataset, significantly reducing memory usage and the run time by more than 10-fold for large image stacks. Benchmarked against the conventional method and existing software, our approach demonstrates linear runtime compared to the cubic and quadratic runtime of the other approaches. Preprocessing a raw 3D volume of 2 GB (512 × 1536 × 600 pixels) can be accomplished in 3 s using a GPU with 24 GB of memory on a single workstation. Applied to 4D LLSM datasets of human hepatocytes, lung organoid tissue and brain organoid tissue, our method provided rapid and accurate preprocessing within seconds. Importantly, such preprocessing speeds now allow visualisation of the raw microscope data stream in real time, significantly improving the usability of LLSM in biology. In summary, this advancement holds transformative potential for light-sheet microscopy, enabling real-time, on-the-fly data preprocessing, visualisation, and analysis on standard workstations, thereby revolutionising biological imaging applications for LLSM and similar microscopes.

光片荧光显微镜(LSFM)是一种著名的荧光显微镜技术,可为生物样品的四维(4D;x、y、z、时间)成像提供更高的时间分辨率。包括倒置选择性平面照明显微镜(iSPIM)和晶格光片显微镜(LLSM)在内的一些最新技术,可使样品基底相对于检测物镜的光轴成斜角移动。这种倾斜样品扫描 LSFM 的数据需要随后进行纠偏和旋转,以便进行适当的可视化和分析。目前,此类数据预处理操作需要分配大量内存,对大型 4D 数据集的计算提出了巨大挑战。因此,与数据采集时间相比,数据预处理时间更长,这就限制了在显微镜采集数据时实时查看数据的能力。为了在不需要大量硬件的情况下快速预处理大型光片显微镜数据集,我们开发了 WH-Transform,这是一种内存效率高的转换算法,用于对原始数据集进行纠偏和旋转。以传统方法和现有软件为基准,与其他方法的三次方和二次方运行时间相比,我们的方法显示了线性运行时间。在单个工作站上使用具有 24 GB 内存的 GPU,可在 3 秒内完成对 2 GB(512 × 1536 × 600 像素)原始三维体积的预处理。将我们的方法应用于人类肝细胞、肺类器官组织和脑类器官组织的 4D LLSM 数据集,可在数秒内完成快速准确的预处理。重要的是,这样的预处理速度现在可以实现显微镜原始数据流的实时可视化,大大提高了 LLSM 在生物学中的可用性。总之,这一进步为光片显微镜带来了变革性的潜力,使其能够在标准工作站上进行实时、即时的数据预处理、可视化和分析,从而彻底改变了 LLSM 和类似显微镜的生物成像应用。
{"title":"LiveLattice: Real-time visualisation of tilted light-sheet microscopy data using a memory-efficient transformation algorithm.","authors":"Zichen Wang, Hiroyuki Hakozaki, Gillian McMahon, Marta Medina-Carbonero, Johannes Schöneberg","doi":"10.1111/jmi.13358","DOIUrl":"10.1111/jmi.13358","url":null,"abstract":"<p><p>Light-sheet fluorescence microscopy (LSFM), a prominent fluorescence microscopy technique, offers enhanced temporal resolution for imaging biological samples in four dimensions (4D; x, y, z, time). Some of the most recent implementations, including inverted selective plane illumination microscopy (iSPIM) and lattice light-sheet microscopy (LLSM), move the sample substrate at an oblique angle relative to the detection objective's optical axis. Data from such tilted-sample-scan LSFMs require subsequent deskewing and rotation for proper visualisation and analysis. Such data preprocessing operations currently demand substantial memory allocation and pose significant computational challenges for large 4D dataset. The consequence is prolonged data preprocessing time compared to data acquisition time, which limits the ability for live-viewing the data as it is being captured by the microscope. To enable the fast preprocessing of large light-sheet microscopy datasets without significant hardware demand, we have developed WH-Transform, a memory-efficient transformation algorithm for deskewing and rotating the raw dataset, significantly reducing memory usage and the run time by more than 10-fold for large image stacks. Benchmarked against the conventional method and existing software, our approach demonstrates linear runtime compared to the cubic and quadratic runtime of the other approaches. Preprocessing a raw 3D volume of 2 GB (512 × 1536 × 600 pixels) can be accomplished in 3 s using a GPU with 24 GB of memory on a single workstation. Applied to 4D LLSM datasets of human hepatocytes, lung organoid tissue and brain organoid tissue, our method provided rapid and accurate preprocessing within seconds. Importantly, such preprocessing speeds now allow visualisation of the raw microscope data stream in real time, significantly improving the usability of LLSM in biology. In summary, this advancement holds transformative potential for light-sheet microscopy, enabling real-time, on-the-fly data preprocessing, visualisation, and analysis on standard workstations, thereby revolutionising biological imaging applications for LLSM and similar microscopes.</p>","PeriodicalId":16484,"journal":{"name":"Journal of microscopy","volume":" ","pages":"123-134"},"PeriodicalIF":1.5,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11733850/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142365480","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Novel analysis tool for the distance of gold dimers controlled by the DNA strand length on the DNA origami. 通过 DNA 折纸上的 DNA 链长度控制金二聚体距离的新型分析工具。
IF 1.5 4区 工程技术 Q3 MICROSCOPY Pub Date : 2025-02-01 Epub Date: 2024-11-15 DOI: 10.1111/jmi.13371
Jannik Guckel, Zhe Liu, Zunhao Wang, Birka Lalkens, Markus Etzkorn, Daesung Park

Metallic nanoparticle dimers have been used to enhance the excitation rate of single-quantum emitters. The interparticle distance (d) of the dimers has a crucial influence on the signal enhancement. Therefore, precise control of d is desired for optimal performance. However, statistical analysis of d has been often restricted to a small number of dimers due to the lack of reliable automatic software tools. For this reason, we developed a novel analysis tool for automatic dimer analysis. Our approach combines particle detection by circle Hough transformation (CHT) with custom classification routines optimised for distinct types of particles. We applied our tool to scanning electron microscopy (SEM) images and achieved great agreement in dimer detection, reaching an agreement of around 97% between automatic analysis and manual inspection for more than 3000 metallic nanoparticle dimers on DNA origami controlled by a combination of multiple DNA strands. Our study revealed the effects of the strand length (L) on the distribution of d. Based on geometric consideration, we expected a strong correlation between L and the standard deviation (σ) of d. We could verify this correlation by characterising four dimer designs with different L while analysing more than 1000 dimers per specimen.

金属纳米粒子二聚体已被用于提高单量子发射器的激发率。二聚体的粒子间距(d)对信号增强有至关重要的影响。因此,要想获得最佳性能,就必须精确控制 d。然而,由于缺乏可靠的自动软件工具,对 d 的统计分析往往局限于少数二聚体。为此,我们开发了一种新型分析工具,用于自动二聚体分析。我们的方法将圆圈霍夫变换(CHT)的颗粒检测与针对不同类型颗粒进行优化的定制分类例程相结合。我们将这一工具应用于扫描电子显微镜(SEM)图像,在二聚体检测方面取得了很好的一致性,对于由多条 DNA 链组合控制的 DNA 折纸上的 3000 多个金属纳米粒子二聚体,自动分析与人工检测的一致性达到了 97% 左右。我们的研究揭示了DNA链长度(L)对d分布的影响。基于几何考虑,我们预计L与d的标准偏差(σ)之间存在很强的相关性。
{"title":"Novel analysis tool for the distance of gold dimers controlled by the DNA strand length on the DNA origami.","authors":"Jannik Guckel, Zhe Liu, Zunhao Wang, Birka Lalkens, Markus Etzkorn, Daesung Park","doi":"10.1111/jmi.13371","DOIUrl":"10.1111/jmi.13371","url":null,"abstract":"<p><p>Metallic nanoparticle dimers have been used to enhance the excitation rate of single-quantum emitters. The interparticle distance (d) of the dimers has a crucial influence on the signal enhancement. Therefore, precise control of d is desired for optimal performance. However, statistical analysis of d has been often restricted to a small number of dimers due to the lack of reliable automatic software tools. For this reason, we developed a novel analysis tool for automatic dimer analysis. Our approach combines particle detection by circle Hough transformation (CHT) with custom classification routines optimised for distinct types of particles. We applied our tool to scanning electron microscopy (SEM) images and achieved great agreement in dimer detection, reaching an agreement of around 97% between automatic analysis and manual inspection for more than 3000 metallic nanoparticle dimers on DNA origami controlled by a combination of multiple DNA strands. Our study revealed the effects of the strand length (L) on the distribution of d. Based on geometric consideration, we expected a strong correlation between L and the standard deviation (σ) of d. We could verify this correlation by characterising four dimer designs with different L while analysing more than 1000 dimers per specimen.</p>","PeriodicalId":16484,"journal":{"name":"Journal of microscopy","volume":" ","pages":"215-226"},"PeriodicalIF":1.5,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11733842/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142622261","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Imaging and observation of microcirculation in bowel mucosa using sidestream dark field imaging. 利用侧流暗场成像技术对肠粘膜的微循环进行成像和观察。
IF 1.5 4区 工程技术 Q3 MICROSCOPY Pub Date : 2025-02-01 Epub Date: 2024-11-08 DOI: 10.1111/jmi.13367
Keming Jiang, Lihong Chen, Hengyu Zhao, Huanxin Hu, Sicong Lai, Xinzhe Zhao, Hongda Zhang, Jia Ke, Qiongyu Hu

Sidestream dark field (SDF) imaging is a tool for assessing microcirculation, commonly used for early diagnosis and monitoring of sepsis. In this study, we used SDF imaging to observe and assess the microcirculation of the intestinal mucosa during bowel surgery. We also compared different performance between normal mucosa and diseased mucosa using SDF imaging. SDF imaging was conducted in 13 patients to evaluate microcirculation parameters. All patients were assessed at distances of 0, 1, 2, 3 and 4 centimeters (cm) from the edge of the mesentery, respectively. Microcirculatory parameters such as microvascular flow index (MFI), proportion of perfused vessels (PPV), vascular density (VD), total vessel density (TVD), perfused vessel density (PVD) and heterogeneity index (HI) were measured in these patients. Compared to normal intestinal mucosa, the diseased intestinal mucosa exhibited higher values for VD (p = 0.044), TVD (p = 0.006) and PVD (p = 0.007). No significant differences in PPV, MFI and HI were observed between the two groups. The microcirculation parameters (MFI, PPV and PVD) of the intestine at the distal distance of 3 cm were significantly lower than those at a distance of 2 cm (MFI 1.5 (0.75) vs. 3 (0.5), PPV 57.6 (9.1) vs. 97.1 (8.6)% and PVD 11.395 (3.082) vs. 20.726 (4.115) mm/mm2). In conclusion, SDF imaging is an advanced technique that provide real-time visualization of intestinal mucosal microcirculation. It has the potential to assess the blood perfusion of the intestine during surgery.

侧流暗视野(SDF)成像是一种评估微循环的工具,常用于败血症的早期诊断和监测。在这项研究中,我们使用 SDF 成像观察和评估肠道手术中肠粘膜的微循环。我们还利用 SDF 成像比较了正常粘膜和病变粘膜的不同表现。我们对 13 名患者进行了 SDF 成像,以评估微循环参数。所有患者分别在距离肠系膜边缘 0、1、2、3 和 4 厘米(cm)处接受评估。这些患者的微循环参数包括微血管流量指数(MFI)、灌注血管比例(PPV)、血管密度(VD)、总血管密度(TVD)、灌注血管密度(PVD)和异质性指数(HI)。与正常肠粘膜相比,病变肠粘膜的 VD 值(p = 0.044)、TVD 值(p = 0.006)和 PVD 值(p = 0.007)更高。两组间的 PPV、MFI 和 HI 无明显差异。远端距离 3 厘米处的肠道微循环参数(MFI、PPV 和 PVD)明显低于距离 2 厘米处(MFI 1.5 (0.75) vs. 3 (0.5),PPV 57.6 (9.1) vs. 97.1 (8.6)%,PVD 11.395 (3.082) vs. 20.726 (4.115) mm/mm2)。总之,SDF 成像是一种先进的技术,可实时显示肠粘膜微循环。它具有在手术过程中评估肠道血液灌注的潜力。
{"title":"Imaging and observation of microcirculation in bowel mucosa using sidestream dark field imaging.","authors":"Keming Jiang, Lihong Chen, Hengyu Zhao, Huanxin Hu, Sicong Lai, Xinzhe Zhao, Hongda Zhang, Jia Ke, Qiongyu Hu","doi":"10.1111/jmi.13367","DOIUrl":"10.1111/jmi.13367","url":null,"abstract":"<p><p>Sidestream dark field (SDF) imaging is a tool for assessing microcirculation, commonly used for early diagnosis and monitoring of sepsis. In this study, we used SDF imaging to observe and assess the microcirculation of the intestinal mucosa during bowel surgery. We also compared different performance between normal mucosa and diseased mucosa using SDF imaging. SDF imaging was conducted in 13 patients to evaluate microcirculation parameters. All patients were assessed at distances of 0, 1, 2, 3 and 4 centimeters (cm) from the edge of the mesentery, respectively. Microcirculatory parameters such as microvascular flow index (MFI), proportion of perfused vessels (PPV), vascular density (VD), total vessel density (TVD), perfused vessel density (PVD) and heterogeneity index (HI) were measured in these patients. Compared to normal intestinal mucosa, the diseased intestinal mucosa exhibited higher values for VD (p = 0.044), TVD (p = 0.006) and PVD (p = 0.007). No significant differences in PPV, MFI and HI were observed between the two groups. The microcirculation parameters (MFI, PPV and PVD) of the intestine at the distal distance of 3 cm were significantly lower than those at a distance of 2 cm (MFI 1.5 (0.75) vs. 3 (0.5), PPV 57.6 (9.1) vs. 97.1 (8.6)% and PVD 11.395 (3.082) vs. 20.726 (4.115) mm/mm<sup>2</sup>). In conclusion, SDF imaging is an advanced technique that provide real-time visualization of intestinal mucosal microcirculation. It has the potential to assess the blood perfusion of the intestine during surgery.</p>","PeriodicalId":16484,"journal":{"name":"Journal of microscopy","volume":" ","pages":"203-214"},"PeriodicalIF":1.5,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142622257","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Neural network-assisted localization of clustered point spread functions in single-molecule localization microscopy. 神经网络辅助单分子定位显微镜中的聚类点扩散函数定位。
IF 1.5 4区 工程技术 Q3 MICROSCOPY Pub Date : 2025-02-01 Epub Date: 2024-10-04 DOI: 10.1111/jmi.13362
Pranjal Choudhury, Bosanta R Boruah

Single-molecule localization microscopy (SMLM), which has revolutionized nanoscale imaging, faces challenges in densely labelled samples due to fluorophore clustering, leading to compromised localization accuracy. In this paper, we propose a novel convolutional neural network (CNN)-assisted approach to address the issue of locating the clustered fluorophores. Our CNN is trained on a diverse data set of simulated SMLM images where it learns to predict point spread function (PSF) locations by generating Gaussian blobs as output. Through rigorous evaluation, we demonstrate significant improvements in PSF localization accuracy, especially in densely labelled samples where traditional methods struggle. In addition, we employ blob detection as a post-processing technique to refine the predicted PSF locations and enhance localization precision. Our study underscores the efficacy of CNN in addressing clustering challenges in SMLM, thereby advancing spatial resolution and enabling deeper insights into complex biological structures.

单分子定位显微镜(SMLM)为纳米级成像带来了革命性的变化,但在高密度标记的样品中,由于荧光团的聚集,定位精度受到影响。在本文中,我们提出了一种新型卷积神经网络(CNN)辅助方法来解决荧光团定位问题。我们的卷积神经网络在模拟 SMLM 图像的各种数据集上进行训练,通过生成高斯块作为输出,学习预测点扩散函数(PSF)的位置。通过严格的评估,我们证明了 PSF 定位精度的显著提高,尤其是在传统方法难以解决的高密度标记样本中。此外,我们还采用了圆球检测作为后处理技术,以完善预测的 PSF 位置并提高定位精度。我们的研究强调了 CNN 在解决 SMLM 中的聚类难题方面的功效,从而提高了空间分辨率,使人们能够更深入地了解复杂的生物结构。
{"title":"Neural network-assisted localization of clustered point spread functions in single-molecule localization microscopy.","authors":"Pranjal Choudhury, Bosanta R Boruah","doi":"10.1111/jmi.13362","DOIUrl":"10.1111/jmi.13362","url":null,"abstract":"<p><p>Single-molecule localization microscopy (SMLM), which has revolutionized nanoscale imaging, faces challenges in densely labelled samples due to fluorophore clustering, leading to compromised localization accuracy. In this paper, we propose a novel convolutional neural network (CNN)-assisted approach to address the issue of locating the clustered fluorophores. Our CNN is trained on a diverse data set of simulated SMLM images where it learns to predict point spread function (PSF) locations by generating Gaussian blobs as output. Through rigorous evaluation, we demonstrate significant improvements in PSF localization accuracy, especially in densely labelled samples where traditional methods struggle. In addition, we employ blob detection as a post-processing technique to refine the predicted PSF locations and enhance localization precision. Our study underscores the efficacy of CNN in addressing clustering challenges in SMLM, thereby advancing spatial resolution and enabling deeper insights into complex biological structures.</p>","PeriodicalId":16484,"journal":{"name":"Journal of microscopy","volume":" ","pages":"153-164"},"PeriodicalIF":1.5,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142375580","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quantifying whole human hair scalp fibres of varying curl: A micro-computed tomographic study. 量化不同卷曲度的整个人类头发头皮纤维:微型计算机断层扫描研究。
IF 1.5 4区 工程技术 Q3 MICROSCOPY Pub Date : 2025-02-01 Epub Date: 2024-11-20 DOI: 10.1111/jmi.13365
Claire van den Berg, Nonhlanhla P Khumalo, Malebogo N Ngoepe

Scalp hair is a key feature of humans and its variability has been the subject of a broad range of studies. A small subset of these studies has focused on geometric quantification of human scalp hair fibres, however the use of race- and ethnicity-based classification systems makes it challenging to draw objective conclusions about fibre variability. Furthermore, sample preparation techniques for micro-imaging studies often alter the original form of hair fibres. This study sought to determine which of the commonly reported descriptors could be resolved using micro-computed tomography (micro-CT) for fibres of varying curl. Images obtained from micro-CT were used to reconstruct three-dimensional images that were then analysed. The study also explored the capabilities and limitations of micro-CT as an imaging modality by comparing and cross-validating findings with those obtained from scanning electron microscopy (SEM) and laser micrometry. The former deals with surface imaging while the latter deals with cross-sectional measurements. Micro-CT was found to be highly effective at resolving cross-sectional ellipsoidal parameters, but performed more poorly than SEM in reconstructing surface level details at a 2 μ m $umutext{m}$ resolution. The technique was, however, able to reveal the presence of the medulla in type VI (high curl) hair fibres. When compared with high curl fibres, greater intra-fibre variability was observed for the low and medium curl fibres, highlighting the importance more objective classification systems.

头皮毛发是人类的一个重要特征,其变异性一直是广泛研究的主题。这些研究中有一小部分侧重于人类头皮毛发纤维的几何量化,但由于使用了基于种族和人种的分类系统,因此很难就纤维的变异性得出客观的结论。此外,用于显微成像研究的样本制备技术往往会改变头发纤维的原始形态。本研究试图确定哪些通常报道的描述符可以通过显微计算机断层扫描(micro-CT)来解析不同卷曲度的纤维。通过微型计算机断层扫描获得的图像被用于重建三维图像,然后对这些图像进行分析。该研究还通过比较和交叉验证扫描电子显微镜(SEM)和激光测微仪获得的结果,探讨了微计算机断层扫描作为一种成像模式的能力和局限性。前者用于表面成像,后者用于横截面测量。研究发现,显微计算机断层扫描在解析横截面椭圆参数方面非常有效,但在以 2 μ m $umutext{m}$ 的分辨率重建表面细节方面的表现比扫描电子显微镜差。不过,该技术能够揭示 VI 型(高卷曲)毛发纤维中髓质的存在。与高卷曲度纤维相比,低卷曲度和中卷曲度纤维的纤维内变异性更大,这凸显了更客观分类系统的重要性。
{"title":"Quantifying whole human hair scalp fibres of varying curl: A micro-computed tomographic study.","authors":"Claire van den Berg, Nonhlanhla P Khumalo, Malebogo N Ngoepe","doi":"10.1111/jmi.13365","DOIUrl":"10.1111/jmi.13365","url":null,"abstract":"<p><p>Scalp hair is a key feature of humans and its variability has been the subject of a broad range of studies. A small subset of these studies has focused on geometric quantification of human scalp hair fibres, however the use of race- and ethnicity-based classification systems makes it challenging to draw objective conclusions about fibre variability. Furthermore, sample preparation techniques for micro-imaging studies often alter the original form of hair fibres. This study sought to determine which of the commonly reported descriptors could be resolved using micro-computed tomography (micro-CT) for fibres of varying curl. Images obtained from micro-CT were used to reconstruct three-dimensional images that were then analysed. The study also explored the capabilities and limitations of micro-CT as an imaging modality by comparing and cross-validating findings with those obtained from scanning electron microscopy (SEM) and laser micrometry. The former deals with surface imaging while the latter deals with cross-sectional measurements. Micro-CT was found to be highly effective at resolving cross-sectional ellipsoidal parameters, but performed more poorly than SEM in reconstructing surface level details at a 2 <math> <semantics><mrow><mi>μ</mi> <mi>m</mi></mrow> <annotation>$umutext{m}$</annotation></semantics> </math> resolution. The technique was, however, able to reveal the presence of the medulla in type VI (high curl) hair fibres. When compared with high curl fibres, greater intra-fibre variability was observed for the low and medium curl fibres, highlighting the importance more objective classification systems.</p>","PeriodicalId":16484,"journal":{"name":"Journal of microscopy","volume":" ","pages":"227-251"},"PeriodicalIF":1.5,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11733847/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142675958","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Innovative sample preparation using alcohol dehydration and high refractive index medium enables acquisition of two-channel super-resolution 3D STED image of an entire oocyte. 利用酒精脱水和高折射率介质进行创新性样品制备,可获得整个卵母细胞的双通道超分辨率 3D STED 图像。
IF 1.5 4区 工程技术 Q3 MICROSCOPY Pub Date : 2025-02-01 Epub Date: 2024-10-11 DOI: 10.1111/jmi.13363
Michaela Frolikova, Michaela Blazikova, Martin Capek, Helena Chmelova, Jan Valecka, Veronika Kolackova, Eliska Valaskova, Martin Gregor, Katerina Komrskova, Ondrej Horvath, Ivan Novotny

Super-resolution (SR) microscopy is a cutting-edge method that can provide detailed structural information with high resolution. However, the thickness of the specimen has been a major limitation for SR methods, and large biological structures have posed a challenge. To overcome this, the key step is to optimise sample preparation to ensure optical homogeneity and clarity, which can enhance the capabilities of SR methods for the acquisition of thicker structures. Oocytes are the largest cells in the mammalian body and are crucial objects in reproductive biology. They are especially useful for studying membrane proteins. However, oocytes are extremely fragile and sensitive to mechanical manipulation and osmotic shocks, making sample preparation a critical and challenging step. We present an innovative, simple and sensitive approach to oocyte sample preparation for 3D STED acquisition. This involves alcohol dehydration and mounting into a high refractive index medium. This extended preparation procedure allowed us to successfully obtain a unique two-channel 3D STED SR image of an entire mouse oocyte. By optimising sample preparation, it is possible to overcome current limitations of SR methods and obtain high-resolution images of large biological structures, such as oocytes, in order to study fundamental biological processes. Lay Abstract: Super-resolution (SR) microscopy is a cutting-edge tool that allows scientists to view incredibly fine details in biological samples. However, it struggles with larger, thicker specimens, as they need to be optically clear and uniform for the best imaging results. In this study, we refined the sample preparation process to make it more suitable for SR microscopy. Our method includes carefully dehydrating biological samples with alcohol and then transferring them into a mounting medium that enhances optical clarity. This improved protocol enables high-resolution imaging of thick biological structures, which was previously challenging. By optimizing this preparation method, we hope to expand the use of SR microscopy for studying large biological samples, helping scientists better understand complex biological structures.

超分辨率(SR)显微镜是一种前沿方法,可提供高分辨率的详细结构信息。然而,标本的厚度一直是超分辨显微镜方法的主要限制因素,大型生物结构也是一个挑战。要克服这一问题,关键步骤是优化样品制备,确保光学均匀性和清晰度,从而提高 SR 方法获取较厚结构的能力。卵母细胞是哺乳动物体内最大的细胞,也是生殖生物学的重要研究对象。它们对研究膜蛋白特别有用。然而,卵母细胞非常脆弱,对机械操作和渗透冲击非常敏感,因此样品制备是一个关键且具有挑战性的步骤。我们提出了一种创新、简单而灵敏的方法来制备用于 3D STED 采集的卵母细胞样本。这包括酒精脱水和装入高折射率介质。这种扩展的制备程序使我们成功地获得了整个小鼠卵母细胞的独特双通道三维 STED SR 图像。通过优化样品制备,可以克服目前 SR 方法的局限性,获得大型生物结构(如卵母细胞)的高分辨率图像,从而研究基本的生物过程。论文摘要:超分辨(SR)显微镜是一种尖端工具,可让科学家观察到生物样本中令人难以置信的精细细节。然而,超分辨显微镜在处理较大、较厚的样本时却很吃力,因为样本必须光学清晰、均匀,才能获得最佳成像效果。在这项研究中,我们改进了样本制备过程,使其更适合 SR 显微镜。我们的方法包括用酒精仔细地使生物样本脱水,然后将其转移到能提高光学清晰度的装片介质中。这种改进后的方案能够对厚的生物结构进行高分辨率成像,而这在以前是具有挑战性的。我们希望通过优化这种制备方法,扩大 SR 显微镜在研究大型生物样本方面的应用,帮助科学家更好地了解复杂的生物结构。
{"title":"Innovative sample preparation using alcohol dehydration and high refractive index medium enables acquisition of two-channel super-resolution 3D STED image of an entire oocyte.","authors":"Michaela Frolikova, Michaela Blazikova, Martin Capek, Helena Chmelova, Jan Valecka, Veronika Kolackova, Eliska Valaskova, Martin Gregor, Katerina Komrskova, Ondrej Horvath, Ivan Novotny","doi":"10.1111/jmi.13363","DOIUrl":"10.1111/jmi.13363","url":null,"abstract":"<p><p>Super-resolution (SR) microscopy is a cutting-edge method that can provide detailed structural information with high resolution. However, the thickness of the specimen has been a major limitation for SR methods, and large biological structures have posed a challenge. To overcome this, the key step is to optimise sample preparation to ensure optical homogeneity and clarity, which can enhance the capabilities of SR methods for the acquisition of thicker structures. Oocytes are the largest cells in the mammalian body and are crucial objects in reproductive biology. They are especially useful for studying membrane proteins. However, oocytes are extremely fragile and sensitive to mechanical manipulation and osmotic shocks, making sample preparation a critical and challenging step. We present an innovative, simple and sensitive approach to oocyte sample preparation for 3D STED acquisition. This involves alcohol dehydration and mounting into a high refractive index medium. This extended preparation procedure allowed us to successfully obtain a unique two-channel 3D STED SR image of an entire mouse oocyte. By optimising sample preparation, it is possible to overcome current limitations of SR methods and obtain high-resolution images of large biological structures, such as oocytes, in order to study fundamental biological processes. Lay Abstract: Super-resolution (SR) microscopy is a cutting-edge tool that allows scientists to view incredibly fine details in biological samples. However, it struggles with larger, thicker specimens, as they need to be optically clear and uniform for the best imaging results. In this study, we refined the sample preparation process to make it more suitable for SR microscopy. Our method includes carefully dehydrating biological samples with alcohol and then transferring them into a mounting medium that enhances optical clarity. This improved protocol enables high-resolution imaging of thick biological structures, which was previously challenging. By optimizing this preparation method, we hope to expand the use of SR microscopy for studying large biological samples, helping scientists better understand complex biological structures.</p>","PeriodicalId":16484,"journal":{"name":"Journal of microscopy","volume":" ","pages":"165-178"},"PeriodicalIF":1.5,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11733846/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142400441","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
In situ isotropic 3D imaging of vasculature perfusion specimens using x-ray microscopic dual-energy CT. 利用 X 射线显微双能 CT 对血管灌注标本进行原位各向同性三维成像。
IF 1.5 4区 工程技术 Q3 MICROSCOPY Pub Date : 2025-02-01 Epub Date: 2024-11-06 DOI: 10.1111/jmi.13369
Stephan Handschuh, Ursula Reichart, Stefan Kummer, Martin Glösmann

Ex vivo x-ray angiography provides high-resolution, three-dimensional information on vascular phenotypes down to the level of capillaries. Sample preparation for ex vivo angiography starts with the removal of blood from the vascular system, followed by perfusion with an x-ray dense contrast agent mixed with a carrier such as gelatine or a polymer. Subsequently, the vascular micro-architecture of harvested organs is imaged in the intact fixed organ. In the present study, we present novel microscopic dual-energy CT (microDECT) imaging protocols that allow to visualise and analyse microvasculature in situ with reference to the morphology of hard and soft tissue. We show that the spectral contrast of µAngiofil and Micropaque barium sulphate in perfused specimens allows for the effective separation of vasculature from mineralised skeletal tissues. Furthermore, we demonstrate the counterstaining of perfused specimens using established x-ray dense contrast agents to depict blood vessels together with the morphology of soft tissue. Phosphotungstic acid (PTA) is used as a counterstain that shows excellent spectral contrast in both µAngiofil and Micropaque barium sulphate-perfused specimens. A novel Sorensen-buffered PTA protocol is introduced as a counterstain for µAngiofil specimens, as the polyurethane polymer is susceptible to artefacts when using conventional staining solutions. Finally, we demonstrate that counterstained samples can be automatically processed into three separate image channels (skeletal tissue, vasculature and stained soft tissue), which offers multiple new options for data analysis. The presented microDECT workflows are suited as tools to screen and quantify microvasculature and can be implemented in various correlative imaging pipelines to target regions of interest for downstream light microscopic investigation.

体外 X 射线血管造影术可提供低至毛细血管水平的高分辨率三维血管表型信息。体外血管造影的样品制备首先要清除血管系统中的血液,然后用一种与明胶或聚合物等载体混合的 X 射线致密造影剂进行灌注。随后,在完整固定的器官中对采集器官的血管微观结构进行成像。在本研究中,我们提出了新颖的显微双能 CT(microDECT)成像方案,可以参照硬组织和软组织的形态,在原位观察和分析微血管。我们的研究表明,µAngiofil 和 Micropaque 硫酸钡在灌注标本中的光谱对比可以有效地将血管从矿化骨骼组织中分离出来。此外,我们还演示了使用成熟的 X 射线致密造影剂对灌注标本进行反染色,以描绘血管和软组织形态。磷钨酸(PTA)作为一种反染色剂,在 µAngiofil 和 Micropaque 硫酸钡灌注标本中都能显示出极佳的光谱对比度。由于聚氨酯聚合物在使用传统染色溶液时容易产生伪影,因此我们引入了一种新颖的索伦森缓冲 PTA 方案作为 µAngiofil 标本的染色剂。最后,我们展示了反染色样本可自动处理成三个独立的图像通道(骨骼组织、血管和染色软组织),这为数据分析提供了多种新选择。所介绍的 microDECT 工作流程适合作为筛选和量化微血管的工具,并可在各种相关成像管道中实施,以瞄准感兴趣的区域进行下游的光学显微镜研究。
{"title":"In situ isotropic 3D imaging of vasculature perfusion specimens using x-ray microscopic dual-energy CT.","authors":"Stephan Handschuh, Ursula Reichart, Stefan Kummer, Martin Glösmann","doi":"10.1111/jmi.13369","DOIUrl":"10.1111/jmi.13369","url":null,"abstract":"<p><p>Ex vivo x-ray angiography provides high-resolution, three-dimensional information on vascular phenotypes down to the level of capillaries. Sample preparation for ex vivo angiography starts with the removal of blood from the vascular system, followed by perfusion with an x-ray dense contrast agent mixed with a carrier such as gelatine or a polymer. Subsequently, the vascular micro-architecture of harvested organs is imaged in the intact fixed organ. In the present study, we present novel microscopic dual-energy CT (microDECT) imaging protocols that allow to visualise and analyse microvasculature in situ with reference to the morphology of hard and soft tissue. We show that the spectral contrast of µAngiofil and Micropaque barium sulphate in perfused specimens allows for the effective separation of vasculature from mineralised skeletal tissues. Furthermore, we demonstrate the counterstaining of perfused specimens using established x-ray dense contrast agents to depict blood vessels together with the morphology of soft tissue. Phosphotungstic acid (PTA) is used as a counterstain that shows excellent spectral contrast in both µAngiofil and Micropaque barium sulphate-perfused specimens. A novel Sorensen-buffered PTA protocol is introduced as a counterstain for µAngiofil specimens, as the polyurethane polymer is susceptible to artefacts when using conventional staining solutions. Finally, we demonstrate that counterstained samples can be automatically processed into three separate image channels (skeletal tissue, vasculature and stained soft tissue), which offers multiple new options for data analysis. The presented microDECT workflows are suited as tools to screen and quantify microvasculature and can be implemented in various correlative imaging pipelines to target regions of interest for downstream light microscopic investigation.</p>","PeriodicalId":16484,"journal":{"name":"Journal of microscopy","volume":" ","pages":"179-202"},"PeriodicalIF":1.5,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11733848/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142583193","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Introduction to special issue '12th International Botanical Microscopy Meeting'.
IF 1.5 4区 工程技术 Q3 MICROSCOPY Pub Date : 2025-01-28 DOI: 10.1111/jmi.13388
Kim Findlay
{"title":"Introduction to special issue '12th International Botanical Microscopy Meeting'.","authors":"Kim Findlay","doi":"10.1111/jmi.13388","DOIUrl":"https://doi.org/10.1111/jmi.13388","url":null,"abstract":"","PeriodicalId":16484,"journal":{"name":"Journal of microscopy","volume":" ","pages":""},"PeriodicalIF":1.5,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143052815","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
ApoNecV: A macro for cell death type differentiation.
IF 1.5 4区 工程技术 Q3 MICROSCOPY Pub Date : 2025-01-24 DOI: 10.1111/jmi.13386
Marketa Kolarikova, Barbora Hosikova, Jiri Tesarik, Katerina Langova, Hana Kolarova

The evaluation of large experimental datasets is a fundamental aspect of research in every scientific field. Streamlining this process can improve the reliability of results while making data analysis more efficient and faster to execute. In biomedical research it is often very important to determine the type of cell death after various treatments. Thus, differentiating between viable, apoptotic, and necrotic cells provide critical insights into the treatment efficacy, a key aspect in the field of drug development. Fluorescent microscopy is perceived as a widely used technique for cell metabolism assessment and can therefore be used to investigate treatment outcomes after staining samples with cell death detection kit. However, accurate evaluation of therapeutic results requires quantitative analysis, often necessitating extensive postprocessing of imaging data. In this study, we introduce a complementary tool designed as a macro for the Fiji platform, enabling the automated postprocessing of fluorescent microscopy images to accurately distinguish and quantify viable, apoptotic, and necrotic cells.

{"title":"ApoNecV: A macro for cell death type differentiation.","authors":"Marketa Kolarikova, Barbora Hosikova, Jiri Tesarik, Katerina Langova, Hana Kolarova","doi":"10.1111/jmi.13386","DOIUrl":"https://doi.org/10.1111/jmi.13386","url":null,"abstract":"<p><p>The evaluation of large experimental datasets is a fundamental aspect of research in every scientific field. Streamlining this process can improve the reliability of results while making data analysis more efficient and faster to execute. In biomedical research it is often very important to determine the type of cell death after various treatments. Thus, differentiating between viable, apoptotic, and necrotic cells provide critical insights into the treatment efficacy, a key aspect in the field of drug development. Fluorescent microscopy is perceived as a widely used technique for cell metabolism assessment and can therefore be used to investigate treatment outcomes after staining samples with cell death detection kit. However, accurate evaluation of therapeutic results requires quantitative analysis, often necessitating extensive postprocessing of imaging data. In this study, we introduce a complementary tool designed as a macro for the Fiji platform, enabling the automated postprocessing of fluorescent microscopy images to accurately distinguish and quantify viable, apoptotic, and necrotic cells.</p>","PeriodicalId":16484,"journal":{"name":"Journal of microscopy","volume":" ","pages":""},"PeriodicalIF":1.5,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143033370","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of microscopy
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1