Pelin L Candarlioglu, Louise Delsing, Lauren Gauthier, Lauren Lewis, George Papadopoulos, May Freag, Tom S Chan, Kimberly A Homan, Mick D Fellows, Amy Pointon, Kyle Kojala
{"title":"Application of microphysiological systems for nonclinical evaluation of cell therapies","authors":"Pelin L Candarlioglu, Louise Delsing, Lauren Gauthier, Lauren Lewis, George Papadopoulos, May Freag, Tom S Chan, Kimberly A Homan, Mick D Fellows, Amy Pointon, Kyle Kojala","doi":"10.14573/altex.2402201","DOIUrl":null,"url":null,"abstract":"<p><p>Microphysiological systems (MPS) are gaining broader application in the pharmaceutical industry but have primarily been leveraged in early discovery toxicology and pharmacology studies with small molecules. The adoption of MPS offers a promising avenue to reduce animal use, improve in-vitro-to-in-vivo translation of pharmacokinetics/pharmacodynamics and toxicity correlation, and provide mechanistic understanding of model species suitability. While MPS have demonstrated utility in these areas with small molecules and biologics, MPS models in cell therapy development have not been fully explored, let alone validated. Distinguishing features of MPS, including long-term viability and physiologically relevant expression of functional enzymes, receptors, and pharmacological targets make them attractive tools for nonclinical characterization. However, there is currently limited published evidence of MPS being utilized to study the disposition, metabolism, pharmacology, and toxicity profiles of cell therapies. This review provides an industry perspective on the nonclinical application of MPS on cell therapies, first with a focus on oncology applications followed by examples in regenerative medicine.</p>","PeriodicalId":51231,"journal":{"name":"Altex-Alternatives To Animal Experimentation","volume":" ","pages":"469-484"},"PeriodicalIF":4.5000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Altex-Alternatives To Animal Experimentation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.14573/altex.2402201","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/15 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Microphysiological systems (MPS) are gaining broader application in the pharmaceutical industry but have primarily been leveraged in early discovery toxicology and pharmacology studies with small molecules. The adoption of MPS offers a promising avenue to reduce animal use, improve in-vitro-to-in-vivo translation of pharmacokinetics/pharmacodynamics and toxicity correlation, and provide mechanistic understanding of model species suitability. While MPS have demonstrated utility in these areas with small molecules and biologics, MPS models in cell therapy development have not been fully explored, let alone validated. Distinguishing features of MPS, including long-term viability and physiologically relevant expression of functional enzymes, receptors, and pharmacological targets make them attractive tools for nonclinical characterization. However, there is currently limited published evidence of MPS being utilized to study the disposition, metabolism, pharmacology, and toxicity profiles of cell therapies. This review provides an industry perspective on the nonclinical application of MPS on cell therapies, first with a focus on oncology applications followed by examples in regenerative medicine.
期刊介绍:
ALTEX publishes original articles, short communications, reviews, as well as news and comments and meeting reports. Manuscripts submitted to ALTEX are evaluated by two expert reviewers. The evaluation takes into account the scientific merit of a manuscript and its contribution to animal welfare and the 3R principle.