Mapping physiology: A systems biology approach for the development of alternative methods in toxicology.

IF 4.5 2区 医学 Q2 MEDICINE, RESEARCH & EXPERIMENTAL Altex-Alternatives To Animal Experimentation Pub Date : 2025-01-20 DOI:10.14573/altex.2412241
Bernard Staumont, Luiz Ladeira, Alessio Gamba, Harm J Heusinkveld, Aldert Piersma, Ellen Fritsche, Rosalinde Masereeuw, Tamara Vanhaecke, Marc Teunis, Thomas H Luechtefeld, Thomas Hartung, Ramiro Jover, Mathieu Vinken, Liesbet Geris
{"title":"Mapping physiology: A systems biology approach for the development of alternative methods in toxicology.","authors":"Bernard Staumont, Luiz Ladeira, Alessio Gamba, Harm J Heusinkveld, Aldert Piersma, Ellen Fritsche, Rosalinde Masereeuw, Tamara Vanhaecke, Marc Teunis, Thomas H Luechtefeld, Thomas Hartung, Ramiro Jover, Mathieu Vinken, Liesbet Geris","doi":"10.14573/altex.2412241","DOIUrl":null,"url":null,"abstract":"<p><p>Chemical safety assessment still heavily relies on animal testing, presenting ethical dilemmas and limited human predictive value. New approach methodologies (NAMs), including in vitro and in silico techniques, offer alternative solutions. In silico toxicology has made progress in predicting chemical effects but frequently lacks biological mechanistic foundations. Recent developments focus on mechanistic understanding of adverse effects inflicted by chemicals, as embedded in (quantitative) adverse outcome pathways (AOPs). However, there is a demand for more detailed mechanistic insights at the gene and cell levels, encompassing both pathology and physiology. Drawing inspiration from the Disease Maps Project, this paper introduces Physiological Maps (PMs) as comprehensive graphical representations of biochemical processes related to specific organ functions. PMs are standardized using Systems Biology Graphical Notation and controlled vocabularies and annotations. Curation guidelines have been developed to ensure reproducibility and usability. This paper presents the methodology used to build PMs, emphasizing the essential collaboration between domain experts and curators. PMs offer user-friendly, standardized visualization for data analysis and educational purposes. Enabling a better understanding of (patho)physiology, they also complement and support the development of AOPs by providing detailed mechanistic information at the gene and cell level. Furthermore, PMs contribute to developing in vitro test batteries and to building (dynamic) in silico models aiming to predict the toxicity of chemicals. Collaborative efforts between the toxicology and systems biology communities are crucial for creating standardized and comprehensive PMs, supporting and accelerating the development of human-relevant NAMs for next-generation risk assessment.</p>","PeriodicalId":51231,"journal":{"name":"Altex-Alternatives To Animal Experimentation","volume":" ","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Altex-Alternatives To Animal Experimentation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.14573/altex.2412241","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Chemical safety assessment still heavily relies on animal testing, presenting ethical dilemmas and limited human predictive value. New approach methodologies (NAMs), including in vitro and in silico techniques, offer alternative solutions. In silico toxicology has made progress in predicting chemical effects but frequently lacks biological mechanistic foundations. Recent developments focus on mechanistic understanding of adverse effects inflicted by chemicals, as embedded in (quantitative) adverse outcome pathways (AOPs). However, there is a demand for more detailed mechanistic insights at the gene and cell levels, encompassing both pathology and physiology. Drawing inspiration from the Disease Maps Project, this paper introduces Physiological Maps (PMs) as comprehensive graphical representations of biochemical processes related to specific organ functions. PMs are standardized using Systems Biology Graphical Notation and controlled vocabularies and annotations. Curation guidelines have been developed to ensure reproducibility and usability. This paper presents the methodology used to build PMs, emphasizing the essential collaboration between domain experts and curators. PMs offer user-friendly, standardized visualization for data analysis and educational purposes. Enabling a better understanding of (patho)physiology, they also complement and support the development of AOPs by providing detailed mechanistic information at the gene and cell level. Furthermore, PMs contribute to developing in vitro test batteries and to building (dynamic) in silico models aiming to predict the toxicity of chemicals. Collaborative efforts between the toxicology and systems biology communities are crucial for creating standardized and comprehensive PMs, supporting and accelerating the development of human-relevant NAMs for next-generation risk assessment.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Altex-Alternatives To Animal Experimentation
Altex-Alternatives To Animal Experimentation MEDICINE, RESEARCH & EXPERIMENTAL-
CiteScore
7.70
自引率
8.90%
发文量
89
审稿时长
2 months
期刊介绍: ALTEX publishes original articles, short communications, reviews, as well as news and comments and meeting reports. Manuscripts submitted to ALTEX are evaluated by two expert reviewers. The evaluation takes into account the scientific merit of a manuscript and its contribution to animal welfare and the 3R principle.
期刊最新文献
Determining a point of departure for skin sensitization potency and quantitative risk assessment of fragrance ingredients using the GARDskin dose-response assay. Mapping physiology: A systems biology approach for the development of alternative methods in toxicology. Biology-inspired dynamic microphysiological system approaches to revolutionize basic research, healthcare and animal welfare. AOPs to connect food additives' effects on gut microbiota to health outcomes. Mapping out strategies to further develop human-relevant, new approach methodology (NAM)-based developmental neurotoxicity (DNT) testing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1