{"title":"SCOREH+: A High-Order Node Proximity Spectral Clustering on Ratios-of-Eigenvectors Algorithm for Community Detection","authors":"Yanhui Zhu;Fang Hu;Lei Hsin Kuo;Jia Liu","doi":"10.1109/TBDATA.2023.3346715","DOIUrl":null,"url":null,"abstract":"The research on complex networks has achieved significant progress in revealing the mesoscopic features of networks. Community detection is an important aspect of understanding real-world complex systems. We present in this paper a High-order node proximity Spectral Clustering on Ratios-of-Eigenvectors (SCOREH+) algorithm for locating communities in complex networks. The algorithm improves SCORE and SCORE+ and preserves high-order transitivity information of the network affinity matrix. We optimize the high-order proximity matrix from the initial affinity matrix using the Radial Basis Functions (RBFs) and Katz index. In addition to the optimization of the Laplacian matrix, we implement a procedure that joins an additional eigenvector (the \n<inline-formula><tex-math>$(k+1){\\rm th}$</tex-math></inline-formula>\n leading eigenvector) to the spectrum domain for clustering if the network is considered to be a “weak signal” graph. The algorithm has been successfully applied to both real-world and synthetic data sets. The proposed algorithm is compared with state-of-art algorithms, such as ASE, Louvain, Fast-Greedy, Spectral Clustering (SC), SCORE, and SCORE+. To demonstrate the high efficacy of the proposed method, we conducted comparison experiments on eleven real-world networks and a number of synthetic networks with noise. The experimental results in most of these networks demonstrate that SCOREH+ outperforms the baseline methods. Moreover, by tuning the RBFs and their shaping parameters, we may generate state-of-the-art community structures on all real-world networks and even on noisy synthetic networks.","PeriodicalId":13106,"journal":{"name":"IEEE Transactions on Big Data","volume":"10 3","pages":"301-312"},"PeriodicalIF":7.5000,"publicationDate":"2023-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Big Data","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10373106/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
The research on complex networks has achieved significant progress in revealing the mesoscopic features of networks. Community detection is an important aspect of understanding real-world complex systems. We present in this paper a High-order node proximity Spectral Clustering on Ratios-of-Eigenvectors (SCOREH+) algorithm for locating communities in complex networks. The algorithm improves SCORE and SCORE+ and preserves high-order transitivity information of the network affinity matrix. We optimize the high-order proximity matrix from the initial affinity matrix using the Radial Basis Functions (RBFs) and Katz index. In addition to the optimization of the Laplacian matrix, we implement a procedure that joins an additional eigenvector (the
$(k+1){\rm th}$
leading eigenvector) to the spectrum domain for clustering if the network is considered to be a “weak signal” graph. The algorithm has been successfully applied to both real-world and synthetic data sets. The proposed algorithm is compared with state-of-art algorithms, such as ASE, Louvain, Fast-Greedy, Spectral Clustering (SC), SCORE, and SCORE+. To demonstrate the high efficacy of the proposed method, we conducted comparison experiments on eleven real-world networks and a number of synthetic networks with noise. The experimental results in most of these networks demonstrate that SCOREH+ outperforms the baseline methods. Moreover, by tuning the RBFs and their shaping parameters, we may generate state-of-the-art community structures on all real-world networks and even on noisy synthetic networks.
期刊介绍:
The IEEE Transactions on Big Data publishes peer-reviewed articles focusing on big data. These articles present innovative research ideas and application results across disciplines, including novel theories, algorithms, and applications. Research areas cover a wide range, such as big data analytics, visualization, curation, management, semantics, infrastructure, standards, performance analysis, intelligence extraction, scientific discovery, security, privacy, and legal issues specific to big data. The journal also prioritizes applications of big data in fields generating massive datasets.