Digital Twin Models: Functions, Challenges, and Industry Applications

IF 2.3 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE journal of radio frequency identification Pub Date : 2024-04-12 DOI:10.1109/JRFID.2024.3387996
Rakiba Rayhana;Ling Bai;Gaozhi Xiao;Min Liao;Zheng Liu
{"title":"Digital Twin Models: Functions, Challenges, and Industry Applications","authors":"Rakiba Rayhana;Ling Bai;Gaozhi Xiao;Min Liao;Zheng Liu","doi":"10.1109/JRFID.2024.3387996","DOIUrl":null,"url":null,"abstract":"In the rapidly evolving landscape of Industry 4.0, digital twins have emerged as a transformative technology across various industrial sectors. This paper presents a comprehensive, in-depth review of digital twin models in terms of the concept and evolution, fundamental components and frameworks, and existing digital twin models based on their functionalities. The paper also discusses how the existing digital twin models are used/adopted in different industries and highlights the existing challenges and potential solutions to address the current issues. This paper aims to provide researchers and industry professionals with a clear insight into the unique benefits and applications of different digital twin models. This review will help to comprehend their significance for specific industrial purposes and foster the advancement of state-of-the-art techniques in this field.","PeriodicalId":73291,"journal":{"name":"IEEE journal of radio frequency identification","volume":"8 ","pages":"282-321"},"PeriodicalIF":2.3000,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE journal of radio frequency identification","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10498081/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

In the rapidly evolving landscape of Industry 4.0, digital twins have emerged as a transformative technology across various industrial sectors. This paper presents a comprehensive, in-depth review of digital twin models in terms of the concept and evolution, fundamental components and frameworks, and existing digital twin models based on their functionalities. The paper also discusses how the existing digital twin models are used/adopted in different industries and highlights the existing challenges and potential solutions to address the current issues. This paper aims to provide researchers and industry professionals with a clear insight into the unique benefits and applications of different digital twin models. This review will help to comprehend their significance for specific industrial purposes and foster the advancement of state-of-the-art techniques in this field.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
数字孪生模型:功能、挑战和行业应用
在快速发展的工业 4.0 环境中,数字孪生已成为横跨各个工业领域的变革性技术。本文从数字孪生模型的概念和演变、基本组件和框架以及基于其功能的现有数字孪生模型等方面,对数字孪生模型进行了全面、深入的评述。本文还讨论了不同行业如何使用/采用现有的数字孪生模型,并强调了现有的挑战和解决当前问题的潜在方案。本文旨在让研究人员和行业专业人士清楚地了解不同数字孪生模型的独特优势和应用。这篇综述将有助于理解数字孪生模型对特定工业目的的意义,并促进该领域最先进技术的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.70
自引率
0.00%
发文量
0
期刊最新文献
News From CRFID Meetings Guest Editorial of the Special Issue on RFID 2023, SpliTech 2023, and IEEE RFID-TA 2023 IoT-Based Integrated Sensing and Logging Solution for Cold Chain Monitoring Applications Robust Low-Cost Drone Detection and Classification Using Convolutional Neural Networks in Low SNR Environments Overview of RFID Applications Utilizing Neural Networks A 920-MHz, 160-μW, 25-dB Gain Negative Resistance Reflection Amplifier for BPSK Modulation RFID Tag
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1