Unveil the Triple Roles of Water Molecule on Power Generation of MXene Derived TiO2 based Moisture Electric Generator

IF 8.2 1区 化学 Q1 CHEMISTRY, ANALYTICAL ACS Sensors Pub Date : 2024-05-14 DOI:10.1002/aenm.202400590
Chao Liu, Tao Wan, Peiyuan Guan, Mengyao Li, Shuo Zhang, Long Hu, Yu-Chieh Kuo, Ziheng Feng, Fandi Chen, Yanzhe Zhu, Haowei Jia, Tao Cao, Tianyue Liang, Tushar Kumeria, Dawei Su, Dewei Chu
{"title":"Unveil the Triple Roles of Water Molecule on Power Generation of MXene Derived TiO2 based Moisture Electric Generator","authors":"Chao Liu,&nbsp;Tao Wan,&nbsp;Peiyuan Guan,&nbsp;Mengyao Li,&nbsp;Shuo Zhang,&nbsp;Long Hu,&nbsp;Yu-Chieh Kuo,&nbsp;Ziheng Feng,&nbsp;Fandi Chen,&nbsp;Yanzhe Zhu,&nbsp;Haowei Jia,&nbsp;Tao Cao,&nbsp;Tianyue Liang,&nbsp;Tushar Kumeria,&nbsp;Dawei Su,&nbsp;Dewei Chu","doi":"10.1002/aenm.202400590","DOIUrl":null,"url":null,"abstract":"<p>Evaporation-driven electricity generators have been proposed to generate electricity by water interacting with nanostructured materials. However, several proposed mechanisms, such as intrinsic gradient of polar functional groups principle and electrokinetic effect perspective, are in wide discrepancy. Here, through the combination of theoretical calculations involving time dimension on material's moisturizing process and experimental analyses, it is revealed the working principle through the water molecule triple roles in driving moisture electric generators (MEGs): 1) intrinsic H<sub>2</sub>O absorption on the material surface and splitting into hydroxy group and proton due to the polarizability of the material surface determined by the static electric potential of the materials. This process induces the electrochemical potential difference of the materials via the work function changes; 2) freely diffused protons derived from the H<sub>2</sub>O splitting work as the ions charge carriers; 3) via the hydrogen bond of the water molecules to drive charge carriers diffuse between opposite electrodes, maintaining the internal circuit current flow. It is successfully unveiled that anatase TiO<sub>2</sub> based materials for output voltage changes correlated to the domains’ work function's difference, tuning by the surface adsorption species (H, Cl, OH) and anisotropic exposed crystal facets of the material. This work unveils MEG's general working principle.</p>","PeriodicalId":24,"journal":{"name":"ACS Sensors","volume":null,"pages":null},"PeriodicalIF":8.2000,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Sensors","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aenm.202400590","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Evaporation-driven electricity generators have been proposed to generate electricity by water interacting with nanostructured materials. However, several proposed mechanisms, such as intrinsic gradient of polar functional groups principle and electrokinetic effect perspective, are in wide discrepancy. Here, through the combination of theoretical calculations involving time dimension on material's moisturizing process and experimental analyses, it is revealed the working principle through the water molecule triple roles in driving moisture electric generators (MEGs): 1) intrinsic H2O absorption on the material surface and splitting into hydroxy group and proton due to the polarizability of the material surface determined by the static electric potential of the materials. This process induces the electrochemical potential difference of the materials via the work function changes; 2) freely diffused protons derived from the H2O splitting work as the ions charge carriers; 3) via the hydrogen bond of the water molecules to drive charge carriers diffuse between opposite electrodes, maintaining the internal circuit current flow. It is successfully unveiled that anatase TiO2 based materials for output voltage changes correlated to the domains’ work function's difference, tuning by the surface adsorption species (H, Cl, OH) and anisotropic exposed crystal facets of the material. This work unveils MEG's general working principle.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
揭示水分子在基于 MXene 衍生 TiO2 的湿气发电机发电过程中的三重作用
有人提出了蒸发驱动发电装置,通过水与纳米结构材料的相互作用来发电。然而,所提出的几种机制,如极性官能团的内在梯度原理和电动效应观点,存在很大差异。本文通过对材料保湿过程的时间维度理论计算与实验分析相结合,揭示了水分子三重作用驱动保湿发电机(MEGs)的工作原理:1)材料表面固有的 H2O 吸收,并由于材料表面的极化性(由材料的静态电动势决定)而分裂成羟基和质子。这一过程通过功函数变化诱导材料的电化学电位差;2)H2O 分裂产生的自由扩散质子作为离子电荷载流子工作;3)通过水分子的氢键驱动电荷载流子在对电极之间扩散,维持内电路电流流动。研究成功揭示了锐钛型二氧化钛材料的输出电压变化与畴的功函数差异相关,并受材料表面吸附物种(H、Cl、OH)和各向异性裸露晶面的调节。这项工作揭示了 MEG 的一般工作原理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Sensors
ACS Sensors Chemical Engineering-Bioengineering
CiteScore
14.50
自引率
3.40%
发文量
372
期刊介绍: ACS Sensors is a peer-reviewed research journal that focuses on the dissemination of new and original knowledge in the field of sensor science, particularly those that selectively sense chemical or biological species or processes. The journal covers a broad range of topics, including but not limited to biosensors, chemical sensors, gas sensors, intracellular sensors, single molecule sensors, cell chips, and microfluidic devices. It aims to publish articles that address conceptual advances in sensing technology applicable to various types of analytes or application papers that report on the use of existing sensing concepts in new ways or for new analytes.
期刊最新文献
Efficient and Stable Organic Solar Cells Achieved by Synergistic Optimization of Extended End-Capped Groups and Fluorinated Quinoxaline Central Cores in Nonfullerene Acceptors Surface Potential Homogenization Improves Perovskite Solar Cell Performance Ultrasensitive, Fast-Response, and Stretchable Temperature Microsensor Based on a Stable Encapsulated Organohydrogel Film for Wearable Applications. Dual-Site Anchors Enabling Vertical Molecular Orientation for Efficient All-Perovskite Tandem Solar Cells Fe-N-C in Proton Exchange Membrane Fuel Cells: Impact of Ionomer Loading on Degradation and Stability
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1