首页 > 最新文献

Advanced Energy Materials最新文献

英文 中文
Pb-Free Infrared Harvesting Colloidal Quantum Dot Solar Cells Using n-p Homojunction Architecture 采用 n-p 同质结结构的无铅红外采集胶体量子点太阳能电池
IF 27.8 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2024-11-18 DOI: 10.1002/aenm.202404141
Youngsang Park, Jugyoung Kim, Minwoo Jeong, Daekwon Shin, Jaegwan Jung, Hyoin Kim, Hyeonjun Jeong, Hyojung Kim, Yong-Hyun Kim, Sohee Jeong
Harvesting infrared (IR) sunlight using colloidal quantum dots (CQDs) holds significant promise for optoelectronic devices including photovoltaics (PVs) and self-powered sensors. Traditionally, Pb chalcogenides have been utilized in energy devices, but needs for RoHS compliance derive the development of Pb-free alternatives. A key challenge with Pb-free materials is the low photovoltage in devices, primarily due to recombination in surface defects and interfaces within the architectures. Here, the Pb-free CQD PVs capable of harvesting the IR light beyond the Si PVs are first presented. Designing an InAs CQD-based homojunction architecture, with n-type InAs absorbers passivated with multifunctional ligands and p-type conductive InAs inks, efficient charge extraction is achieved while suppressing interface recombination. Additionally, the IR light path is modulated to match the absorber's absorption to optimize the performance. This led to InAs PVs with absorber bandgaps ranging from 1.35 to 1.03 eV, significantly improving the open-circuit voltage from 0.05 to 0.26 V and fill factor from 29% to 50%, comparable to Pb-based PVs. The InAs IR-PVs exhibit a power conversion efficiency of 2.00% under one-sun and 0.27% with a Si filter, outperforming control ones (0.28% and 0.03%). This work provides an effective strategy for designing Pb-free, energy-independent IR optoelectronics.
利用胶体量子点(CQDs)收集红外(IR)太阳光为光电设备(包括光伏(PV)和自供电传感器)带来了巨大前景。传统上,能源设备中使用的是铅瑀,但由于需要符合 RoHS 标准,因此需要开发无铅替代品。无铅材料面临的一个主要挑战是器件的光电压较低,这主要是由于表面缺陷和结构内的界面发生了重组。在这里,我们首先介绍了能够收集硅光伏以外的红外光的无铅 CQD 光伏。在设计基于 InAs CQD 的同质结结构时,使用多功能配体钝化 n 型 InAs 吸收体和 p 型导电 InAs 油墨,在抑制界面重组的同时实现了高效电荷提取。此外,还对红外光路径进行了调制,使其与吸收体的吸收相匹配,从而优化了性能。这使得 InAs 光伏的吸收带隙范围从 1.35 到 1.03 eV,开路电压从 0.05 V 显著提高到 0.26 V,填充因子从 29% 提高到 50%,与铅基光伏相当。InAs IR-PV 在单太阳下的功率转换效率为 2.00%,在使用硅滤波器时为 0.27%,优于对照组(0.28% 和 0.03%)。这项工作为设计无铅、与能量无关的红外光电子器件提供了一种有效的策略。
{"title":"Pb-Free Infrared Harvesting Colloidal Quantum Dot Solar Cells Using n-p Homojunction Architecture","authors":"Youngsang Park, Jugyoung Kim, Minwoo Jeong, Daekwon Shin, Jaegwan Jung, Hyoin Kim, Hyeonjun Jeong, Hyojung Kim, Yong-Hyun Kim, Sohee Jeong","doi":"10.1002/aenm.202404141","DOIUrl":"https://doi.org/10.1002/aenm.202404141","url":null,"abstract":"Harvesting infrared (IR) sunlight using colloidal quantum dots (CQDs) holds significant promise for optoelectronic devices including photovoltaics (PVs) and self-powered sensors. Traditionally, Pb chalcogenides have been utilized in energy devices, but needs for RoHS compliance derive the development of Pb-free alternatives. A key challenge with Pb-free materials is the low photovoltage in devices, primarily due to recombination in surface defects and interfaces within the architectures. Here, the Pb-free CQD PVs capable of harvesting the IR light beyond the Si PVs are first presented. Designing an InAs CQD-based homojunction architecture, with <i>n</i>-type InAs absorbers passivated with multifunctional ligands and <i>p</i>-type conductive InAs inks, efficient charge extraction is achieved while suppressing interface recombination. Additionally, the IR light path is modulated to match the absorber's absorption to optimize the performance. This led to InAs PVs with absorber bandgaps ranging from 1.35 to 1.03 eV, significantly improving the open-circuit voltage from 0.05 to 0.26 V and fill factor from 29% to 50%, comparable to Pb-based PVs. The InAs IR-PVs exhibit a power conversion efficiency of 2.00% under one-sun and 0.27% with a Si filter, outperforming control ones (0.28% and 0.03%). This work provides an effective strategy for designing Pb-free, energy-independent IR optoelectronics.","PeriodicalId":111,"journal":{"name":"Advanced Energy Materials","volume":"36 1","pages":""},"PeriodicalIF":27.8,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142665521","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Assessing the Environmental Impact of Pnictogen-based Perovskite-Inspired Materials for Indoor Photovoltaics 评估基于 Pnictogen 的室内光伏用 Perovskite-Inspired 材料对环境的影响
IF 27.8 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2024-11-17 DOI: 10.1002/aenm.202403981
Rosario Vidal, Noora Lamminen, Ville Holappa, Jaume-Adrià Alberola-Borràs, Iván P. Franco, G. Krishnamurthy Grandhi, Paola Vivo
The development of eco-friendly indoor photovoltaics (IPVs) for Internet-of-Things (IoT) devices is booming. Emerging IPVs, especially those based on lead halide perovskites (LHPs), outperform the industry standard of amorphous hydrogenated silicon (a-Si:H). However, the toxic lead in LHPs drives the search for safer alternatives. Perovskite-inspired materials (PIMs) containing bismuth (Bi) and antimony (Sb) have shown promise, achieving indoor power conversion efficiencies (PCE) approaching 10% despite early research stages. This is promising due to their eco-friendlier light-harvesting layers compared to LHPs. Yet, the environmental footprint of pnictogen-based PIM over their lifecycle remains unassessed. This study conducts a life-cycle assessment (LCA) of the best-performing Sb- and Bi-PIMs, considering PCE, raw material availability, energy consumption, and waste generation. It is find that PCE plays a decisive role in identifying the PIM for IPVs with minimized environmental impact, namely a Bi-Sb alloy. Extended LCA simulations for industrial-scale processing show that the most promising Bi-PIM has a reduced environmental burden compared to a-Si:H. It is also explore challenges and solutions for enhancing Bi-and Sb-PIMs’ sustainability. Overall, this study provides the first evidence of the potential of pnictogen-based PIMs as a sustainable IPV technology, addressing whether lead-free PIMs are truly eco-friendly, thus contributing toward battery-less IoT applications.
用于物联网(IoT)设备的环保型室内光伏(IPV)技术正在蓬勃发展。新兴的 IPV,尤其是基于卤化铅包晶石(LHP)的 IPV,性能优于非晶氢化硅(a-Si:H)这一行业标准。然而,LHPs 中的有毒铅促使人们寻找更安全的替代品。含有铋(Bi)和锑(Sb)的透辉石启发材料(PIMs)已显示出良好的前景,尽管还处于早期研究阶段,但其室内功率转换效率(PCE)已接近 10%。与 LHP 相比,这种材料的光收集层更环保,因此前景广阔。然而,基于 pnictogen 的 PIM 在其生命周期内的环境足迹仍未得到评估。本研究对性能最佳的锑和双 PIM 进行了生命周期评估(LCA),考虑了 PCE、原材料可用性、能源消耗和废物产生等因素。结果发现,在确定对环境影响最小的 IPV PIM(即双锑合金)时,PCE 起着决定性作用。工业规模加工的扩展生命周期评估模拟表明,与 a-Si:H 相比,最有前途的 Bi-PIM 可减少环境负担。本研究还探讨了提高双锑和锑-PIM 可持续性所面临的挑战和解决方案。总之,这项研究首次证明了基于pnictogen的PIMs作为可持续IPV技术的潜力,解决了无铅PIMs是否真正环保的问题,从而有助于实现无电池物联网应用。
{"title":"Assessing the Environmental Impact of Pnictogen-based Perovskite-Inspired Materials for Indoor Photovoltaics","authors":"Rosario Vidal, Noora Lamminen, Ville Holappa, Jaume-Adrià Alberola-Borràs, Iván P. Franco, G. Krishnamurthy Grandhi, Paola Vivo","doi":"10.1002/aenm.202403981","DOIUrl":"https://doi.org/10.1002/aenm.202403981","url":null,"abstract":"The development of eco-friendly indoor photovoltaics (IPVs) for Internet-of-Things (IoT) devices is booming. Emerging IPVs, especially those based on lead halide perovskites (LHPs), outperform the industry standard of amorphous hydrogenated silicon (a-Si:H). However, the toxic lead in LHPs drives the search for safer alternatives. Perovskite-inspired materials (PIMs) containing bismuth (Bi) and antimony (Sb) have shown promise, achieving indoor power conversion efficiencies (PCE) approaching 10% despite early research stages. This is promising due to their eco-friendlier light-harvesting layers compared to LHPs. Yet, the environmental footprint of pnictogen-based PIM over their lifecycle remains unassessed. This study conducts a life-cycle assessment (LCA) of the best-performing Sb- and Bi-PIMs, considering PCE, raw material availability, energy consumption, and waste generation. It is find that PCE plays a decisive role in identifying the PIM for IPVs with minimized environmental impact, namely a Bi-Sb alloy. Extended LCA simulations for industrial-scale processing show that the most promising Bi-PIM has a reduced environmental burden compared to a-Si:H. It is also explore challenges and solutions for enhancing Bi-and Sb-PIMs’ sustainability. Overall, this study provides the first evidence of the potential of pnictogen-based PIMs as a sustainable IPV technology, addressing whether lead-free PIMs are truly eco-friendly, thus contributing toward battery-less IoT applications.","PeriodicalId":111,"journal":{"name":"Advanced Energy Materials","volume":"51 1","pages":""},"PeriodicalIF":27.8,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142665482","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A MXene Modulator Enabled High‐Loading Iodine Composite Cathode for Stable and High‐Energy‐Density Zn‐I2 Battery 用于稳定和高能量密度 Zn-I2 电池的 MXene 调制器支持高负载碘复合阴极
IF 27.8 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2024-11-16 DOI: 10.1002/aenm.202404426
Dandan Li, Ying‐Jie Zhu, Long Cheng, Sida Xie, Han‐Ping Yu, Wei Zhang, Zhenming Xu, Ming‐Guo Ma, Heng Li
Achieving both high iodine loading cathode and high Zn anode depth of discharge (DOD) is pivotal to unlocking the full potential of energy‐dense Zn‐I2 batteries. However, this combination exacerbates the detrimental shuttle effect of polyiodide intermediates, significantly impairing the battery's reversibility and stability. Herein, this study reports an advanced high‐loading iodine cathode (denoted as MX‐AB@I) enabled by a multifunctional Ti3C2Tx MXene modulator, which presents high stability and energy density in Zn‐I2 batteries. Through comprehensive experimental and theoretical analyses, the intrinsic regulating mechanisms are elucidated by which the MXene modulator effectively suppresses polyiodide shuttling, enhances iodine conversion kinetics, and dramatically improves Zn anode reversibility. With the aid of the MXene modulator, the MX‐AB@I composite cathode achieves a high iodine mass loading of 23 mg cm−2 and realizes a practically high areal capacity of 4.0 mAh cm−2. When paired with a thin Zn anode (10 µm), this configuration realizes a high Zn DOD of 78.7% and a high energy density of 171.3 Wh kg−1, surpassing the majority of Zn‐I2 battery systems reported in the literature. This study presents an effective approach to designing high‐loading iodine cathodes for Zn‐I2 batteries by leveraging MXene modulators to regulate critical electrochemical reaction processes.
实现高碘负载阴极和高锌阳极放电深度(DOD)对于充分释放高能量 Zn-I2 电池的潜力至关重要。然而,这种组合加剧了多碘化物中间体的有害穿梭效应,严重损害了电池的可逆性和稳定性。在此,本研究报告了一种由多功能 Ti3C2Tx MXene 调制器促成的先进的高负载碘阴极(称为 MX-AB@I),它在 Zn-I2 电池中具有高稳定性和高能量密度。通过全面的实验和理论分析,阐明了 MXene 调制剂有效抑制多碘化物穿梭、提高碘转化动力学和显著改善锌阳极可逆性的内在调节机制。在 MXene 调制器的帮助下,MX-AB@I 复合阴极实现了 23 mg cm-2 的高碘质量负载,并实现了 4.0 mAh cm-2 的实际高面积容量。当与薄锌阳极(10 微米)配对时,这种配置实现了 78.7% 的高锌 DOD 和 171.3 Wh kg-1 的高能量密度,超过了文献中报道的大多数 Zn-I2 电池系统。通过利用 MXene 调制器调节关键的电化学反应过程,本研究提出了一种为 Zn-I2 电池设计高负载碘阴极的有效方法。
{"title":"A MXene Modulator Enabled High‐Loading Iodine Composite Cathode for Stable and High‐Energy‐Density Zn‐I2 Battery","authors":"Dandan Li, Ying‐Jie Zhu, Long Cheng, Sida Xie, Han‐Ping Yu, Wei Zhang, Zhenming Xu, Ming‐Guo Ma, Heng Li","doi":"10.1002/aenm.202404426","DOIUrl":"https://doi.org/10.1002/aenm.202404426","url":null,"abstract":"Achieving both high iodine loading cathode and high Zn anode depth of discharge (DOD) is pivotal to unlocking the full potential of energy‐dense Zn‐I<jats:sub>2</jats:sub> batteries. However, this combination exacerbates the detrimental shuttle effect of polyiodide intermediates, significantly impairing the battery's reversibility and stability. Herein, this study reports an advanced high‐loading iodine cathode (denoted as MX‐AB@I) enabled by a multifunctional Ti<jats:sub>3</jats:sub>C<jats:sub>2</jats:sub>T<jats:sub>x</jats:sub> MXene modulator, which presents high stability and energy density in Zn‐I<jats:sub>2</jats:sub> batteries. Through comprehensive experimental and theoretical analyses, the intrinsic regulating mechanisms are elucidated by which the MXene modulator effectively suppresses polyiodide shuttling, enhances iodine conversion kinetics, and dramatically improves Zn anode reversibility. With the aid of the MXene modulator, the MX‐AB@I composite cathode achieves a high iodine mass loading of 23 mg cm<jats:sup>−2</jats:sup> and realizes a practically high areal capacity of 4.0 mAh cm<jats:sup>−2</jats:sup>. When paired with a thin Zn anode (10 µm), this configuration realizes a high Zn DOD of 78.7% and a high energy density of 171.3 Wh kg<jats:sup>−1</jats:sup>, surpassing the majority of Zn‐I<jats:sub>2</jats:sub> battery systems reported in the literature. This study presents an effective approach to designing high‐loading iodine cathodes for Zn‐I<jats:sub>2</jats:sub> batteries by leveraging MXene modulators to regulate critical electrochemical reaction processes.","PeriodicalId":111,"journal":{"name":"Advanced Energy Materials","volume":"1 1","pages":""},"PeriodicalIF":27.8,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142642735","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Masthead: (Adv. Energy Mater. 43/2024) 刊头:(Adv. Energy Mater.)
IF 27.8 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2024-11-16 DOI: 10.1002/aenm.202470189
Click on the article title to read more.
点击文章标题阅读更多内容。
{"title":"Masthead: (Adv. Energy Mater. 43/2024)","authors":"","doi":"10.1002/aenm.202470189","DOIUrl":"https://doi.org/10.1002/aenm.202470189","url":null,"abstract":"Click on the article title to read more.","PeriodicalId":111,"journal":{"name":"Advanced Energy Materials","volume":"31 1","pages":""},"PeriodicalIF":27.8,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142643233","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A High-Efficiency System for Long-Term Salinity-Gradient Energy Harvesting and Simultaneous Solar Steam Generation 一种用于长期盐度梯度能量收集和同时产生太阳能蒸汽的高效系统
IF 27.8 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2024-11-16 DOI: 10.1002/aenm.202303476
Jun Long, Jun Yin, Fuhua Yang, Guangmin Zhou, Hui-Ming Cheng, Wanlin Guo, Ling Qiu
The vast energy stored in the ocean, which receives an average solar power of ≈60 000 TW per year, surpasses human energy consumption by three orders of magnitude. Harnessing even a small fraction of it holds great promise in addressing global energy and water crises. Here, an integrated device that achieves unprecedented power density up to 1.1 W m−2 with excellent stability through a salinity concentration gradient induced by solar evaporation, while simultaneously producing clean water at a rate of 1.25 kg m−2 h−1 under one sun irradiation is presented. The remarkable electricity generation capability stems from the unique interlayer structure of polyaniline-graphene oxide-MnO2 (PANI@GO/MnO2) electrodes, enabling the recovery of electrochemical potentials from a wide range of ion salinity concentrations within the device and the additional Donnan potential generated by the anion-exchange membrane. Furthermore, periodic flipping of the device effectively reactivates the electrodes and suppresses salt accumulation, enabling long-term operation. Notably, a prototype device of 8 × 25 cm2 exhibits a short-circuit current of 10 mA and an open-circuit voltage of 10.2 V, as well as a clean water production rate of 24.8 g per hour. These findings shed light on the reliable technology for power and freshwater supply in marine environments.
海洋中蕴藏着巨大的能量,每年平均接收的太阳能≈60 000 太瓦,超过人类能源消耗的三个数量级。即使是利用其中的一小部分,也有望解决全球能源和水资源危机。本文介绍了一种集成装置,该装置通过太阳蒸发诱导的盐度浓度梯度,实现了前所未有的高达 1.1 W m-2 的功率密度和出色的稳定性,同时在一个太阳照射下以 1.25 kg m-2 h-1 的速度生产清洁水。其卓越的发电能力源于聚苯胺-氧化石墨烯-二氧化锰(PANI@GO/MnO2)电极独特的层间结构,这种结构使其能够从装置内广泛的离子盐度浓度范围内恢复电化学电位,并通过阴离子交换膜产生额外的唐南电位。此外,定期翻转装置可有效地重新激活电极并抑制盐分积累,从而实现长期运行。值得注意的是,一个 8 × 25 平方厘米的原型装置显示出 10 mA 的短路电流和 10.2 V 的开路电压,以及每小时 24.8 克的净水生产率。这些发现为在海洋环境中提供电力和淡水的可靠技术提供了启示。
{"title":"A High-Efficiency System for Long-Term Salinity-Gradient Energy Harvesting and Simultaneous Solar Steam Generation","authors":"Jun Long, Jun Yin, Fuhua Yang, Guangmin Zhou, Hui-Ming Cheng, Wanlin Guo, Ling Qiu","doi":"10.1002/aenm.202303476","DOIUrl":"https://doi.org/10.1002/aenm.202303476","url":null,"abstract":"The vast energy stored in the ocean, which receives an average solar power of ≈60 000 TW per year, surpasses human energy consumption by three orders of magnitude. Harnessing even a small fraction of it holds great promise in addressing global energy and water crises. Here, an integrated device that achieves unprecedented power density up to 1.1 W m<sup>−2</sup> with excellent stability through a salinity concentration gradient induced by solar evaporation, while simultaneously producing clean water at a rate of 1.25 kg m<sup>−2</sup> h<sup>−1</sup> under one sun irradiation is presented. The remarkable electricity generation capability stems from the unique interlayer structure of polyaniline-graphene oxide-MnO<sub>2</sub> (PANI@GO/MnO<sub>2</sub>) electrodes, enabling the recovery of electrochemical potentials from a wide range of ion salinity concentrations within the device and the additional Donnan potential generated by the anion-exchange membrane. Furthermore, periodic flipping of the device effectively reactivates the electrodes and suppresses salt accumulation, enabling long-term operation. Notably, a prototype device of 8 × 25 cm<sup>2</sup> exhibits a short-circuit current of 10 mA and an open-circuit voltage of 10.2 V, as well as a clean water production rate of 24.8 g per hour. These findings shed light on the reliable technology for power and freshwater supply in marine environments.","PeriodicalId":111,"journal":{"name":"Advanced Energy Materials","volume":"222 1","pages":""},"PeriodicalIF":27.8,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142643225","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evaluating Pressure‐dependent Discharge Behavior of Foil Versus In situ Plated Lithium Metal Anodes in Solid‐State Batteries 评估固态电池中金属箔与原位电镀锂金属阳极随压力变化的放电行为
IF 27.8 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2024-11-16 DOI: 10.1002/aenm.202403614
Catherine G. Haslam, Janis K. Eckhardt, Abhinand Ayyaswamy, Bairav S. Vishnugopi, Till Fuchs, Daniel W. Liao, Neil P. Dasgupta, Partha P. Mukherjee, Jürgen Janek, Jeff Sakamoto
Anode‐free manufacturing of solid‐state batteries (SSBs) shows promise to maximize energy density by eliminating excess lithium (Li) and simplifying battery production. However, high reversibility during discharge (stripping of Li) is necessary for long‐lifetime SSBs with a limited Li reservoir. Further, the plastic flow of Li changes depending on the Li thickness, leading to possible differences in discharge performance under stack pressure. This work investigates the pressure‐dependent discharge performance of anode‐free manufactured SSBs with in situ plated Li and compares the performance to that of conventional thick Li foil cells. Distinct stripping behavior is observed at low pressures (0–1 MPa), where Li diffusivity and initial interfacial contact may control accessible capacity, compared to high pressures (3–10 MPa) where mechanical deformation of Li likely governs stripping behavior. Analysis of impedance spectra collected during stripping shows that additional stack pressure delays the formation of deep, as opposed to lateral, voids in the Li anode. These results provide insights to guide the transition from thick Li foil anodes to anode‐free manufactured SSBs.
固态电池(SSB)的无阳极制造有望通过消除多余的锂(Li)和简化电池生产来最大限度地提高能量密度。然而,放电过程中的高可逆性(锂的剥离)对于锂储量有限的长寿命固态电池来说是必要的。此外,锂的塑性流动会随着锂厚度的变化而变化,从而导致叠层压力下的放电性能可能存在差异。这项研究调查了原位镀锂的无阳极人造 SSB 随压力变化的放电性能,并将其与传统的厚锂箔电池的性能进行了比较。在低压(0-1 兆帕)下观察到了不同的剥离行为,在低压下,锂的扩散性和初始界面接触可能会控制可获取容量,而在高压(3-10 兆帕)下,锂的机械变形可能会控制剥离行为。对剥离过程中收集的阻抗谱分析显示,额外的叠加压力会延迟锂阳极中深层空隙的形成,而不是横向空隙的形成。这些结果为指导从厚锂箔阳极向无阳极制造 SSB 过渡提供了启示。
{"title":"Evaluating Pressure‐dependent Discharge Behavior of Foil Versus In situ Plated Lithium Metal Anodes in Solid‐State Batteries","authors":"Catherine G. Haslam, Janis K. Eckhardt, Abhinand Ayyaswamy, Bairav S. Vishnugopi, Till Fuchs, Daniel W. Liao, Neil P. Dasgupta, Partha P. Mukherjee, Jürgen Janek, Jeff Sakamoto","doi":"10.1002/aenm.202403614","DOIUrl":"https://doi.org/10.1002/aenm.202403614","url":null,"abstract":"Anode‐free manufacturing of solid‐state batteries (SSBs) shows promise to maximize energy density by eliminating excess lithium (Li) and simplifying battery production. However, high reversibility during discharge (stripping of Li) is necessary for long‐lifetime SSBs with a limited Li reservoir. Further, the plastic flow of Li changes depending on the Li thickness, leading to possible differences in discharge performance under stack pressure. This work investigates the pressure‐dependent discharge performance of anode‐free manufactured SSBs with in situ plated Li and compares the performance to that of conventional thick Li foil cells. Distinct stripping behavior is observed at low pressures (0–1 MPa), where Li diffusivity and initial interfacial contact may control accessible capacity, compared to high pressures (3–10 MPa) where mechanical deformation of Li likely governs stripping behavior. Analysis of impedance spectra collected during stripping shows that additional stack pressure delays the formation of deep, as opposed to lateral, voids in the Li anode. These results provide insights to guide the transition from thick Li foil anodes to anode‐free manufactured SSBs.","PeriodicalId":111,"journal":{"name":"Advanced Energy Materials","volume":"5 1","pages":""},"PeriodicalIF":27.8,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142642736","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Directional-Thermal-Conductive Phase Change Composites Enabling Efficient and Durable Water-Electricity Co-Generation Beyond Daytime (Adv. Energy Mater. 43/2024) 定向导热相变复合材料实现高效持久的水电共生,超越白天(Adv. Energy Mater.)
IF 27.8 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2024-11-16 DOI: 10.1002/aenm.202470191
Huachao Yang, Zhongkai Hu, Shiwen Wu, Jianhua Yan, Kefa Cen, Zheng Bo, Guoping Xiong
Water-Electricity Co-Generation
水电联产
{"title":"Directional-Thermal-Conductive Phase Change Composites Enabling Efficient and Durable Water-Electricity Co-Generation Beyond Daytime (Adv. Energy Mater. 43/2024)","authors":"Huachao Yang, Zhongkai Hu, Shiwen Wu, Jianhua Yan, Kefa Cen, Zheng Bo, Guoping Xiong","doi":"10.1002/aenm.202470191","DOIUrl":"https://doi.org/10.1002/aenm.202470191","url":null,"abstract":"<b>Water-Electricity Co-Generation</b>","PeriodicalId":111,"journal":{"name":"Advanced Energy Materials","volume":"51 1","pages":""},"PeriodicalIF":27.8,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142643226","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rapid Scalable One-step Production of Catalysts for Low-Iridium Content Proton Exchange Membrane Water Electrolyzers 一步法快速生产低铱含量质子交换膜水电解槽催化剂
IF 27.8 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2024-11-16 DOI: 10.1002/aenm.202401659
Suriya Venkatesan, Jens Mitzel, Sambal Shashank Ambu, Tobias Morawietz, Indro Biswas, Oscar Recalde, Esmaeil Adabifiroozjaei, Leopoldo Molina-Luna, Deven P. Estes, Karsten Wegner, Pawel Gazdzicki, Aldo Saul Gago, Kaspar Andreas Friedrich
Proton exchange membrane water electrolysis (PEMWE) is a promising technology for green hydrogen production, although its widespread development with state-of-the-art loadings is threatened by the scarcity of iridium (Ir). Homogeneous dispersion of Ir in an immiscible electro-ceramic matrix can enhance catalytic mass activity and structural stability. The study presents IrySn0.9(1−y)Sb0.1(1−y)Ox solid solutions produced by highly scalable flame spray pyrolysis (FSP) process as efficient anode electrocatalysts for PEMWE, containing only 0.2 mg cm−2 of Ir in the catalyst layer (CL). Intense mixing of metal vapor and large thermal gradients in the precursor-derived high-temperature flame aids stabilizing sub-nanoscale entropic mixing within self-preserved 4–6 nm particles. Detailed investigations confirm that the one-step prepared solid solution electrocatalysts exhibit up to fourfold higher activity toward the oxygen evolution reaction (OER) compared to Ir black. The anode of a PEMWE utilizing this catalyst exhibits high performance and stability over 2000 h but with tenfold lower Ir loading than the state-of-art.
质子交换膜电解水技术(PEMWE)是一种前景广阔的绿色制氢技术,但由于铱(Ir)的稀缺,该技术在最先进负载条件下的广泛发展受到了威胁。将铱均匀地分散在不相溶的电陶瓷基体中可以提高催化质量活性和结构稳定性。本研究介绍了通过高度可扩展的火焰喷射热解(FSP)工艺制备的 IrySn0.9(1-y)Sb0.1(1-y)Ox 固溶体,作为 PEMWE 的高效阳极电催化剂,催化剂层(CL)中仅含有 0.2 mg cm-2 的 Ir。在前驱体产生的高温火焰中,金属蒸气的强烈混合和较大的热梯度有助于稳定自保留的 4-6 纳米颗粒内的亚纳米级熵混合。详细研究证实,一步法制备的固溶体电催化剂在氧进化反应(OER)中的活性比 Ir black 高出四倍。使用这种催化剂的 PEMWE 阳极在 2000 小时内表现出高性能和高稳定性,但铱负载量却比最先进的催化剂低十倍。
{"title":"Rapid Scalable One-step Production of Catalysts for Low-Iridium Content Proton Exchange Membrane Water Electrolyzers","authors":"Suriya Venkatesan, Jens Mitzel, Sambal Shashank Ambu, Tobias Morawietz, Indro Biswas, Oscar Recalde, Esmaeil Adabifiroozjaei, Leopoldo Molina-Luna, Deven P. Estes, Karsten Wegner, Pawel Gazdzicki, Aldo Saul Gago, Kaspar Andreas Friedrich","doi":"10.1002/aenm.202401659","DOIUrl":"https://doi.org/10.1002/aenm.202401659","url":null,"abstract":"Proton exchange membrane water electrolysis (PEMWE) is a promising technology for green hydrogen production, although its widespread development with state-of-the-art loadings is threatened by the scarcity of iridium (Ir). Homogeneous dispersion of Ir in an immiscible electro-ceramic matrix can enhance catalytic mass activity and structural stability. The study presents Ir<sub>y</sub>Sn<sub>0.9(1−</sub><i><sub>y</sub></i><sub>)</sub>Sb<sub>0.1(1−</sub><i><sub>y</sub></i><sub>)</sub>O<i><sub>x</sub></i> solid solutions produced by highly scalable flame spray pyrolysis (FSP) process as efficient anode electrocatalysts for PEMWE, containing only 0.2 mg cm<sup>−2</sup> of Ir in the catalyst layer (CL). Intense mixing of metal vapor and large thermal gradients in the precursor-derived high-temperature flame aids stabilizing sub-nanoscale entropic mixing within self-preserved 4–6 nm particles. Detailed investigations confirm that the one-step prepared solid solution electrocatalysts exhibit up to fourfold higher activity toward the oxygen evolution reaction (OER) compared to Ir black. The anode of a PEMWE utilizing this catalyst exhibits high performance and stability over 2000 h but with tenfold lower Ir loading than the state-of-art.","PeriodicalId":111,"journal":{"name":"Advanced Energy Materials","volume":"17 1","pages":""},"PeriodicalIF":27.8,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142643232","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High‐Entropy Phosphide Catalyst‐Based Hybrid Electrolyzer: A Cost‐Effective and Mild‐Condition Approach for H2 Liberation from Methanol 基于高熵磷化物催化剂的混合电解槽:从甲醇中释放 H2 的低成本低条件方法
IF 27.8 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2024-11-16 DOI: 10.1002/aenm.202404114
Xueting Zhao, Wei Sun, Xi Liu, Zhiwen Lu, Kai Chen, Jiyuan Gao, Junxiang Chen, Hao Zhang, Zhenhai Wen
Methanol as a hydrogen carrier provides a practical solution for H2 storage and transport, but traditional reforming faces challenges with low efficiency, CO2 emissions, and the need for specialized infrastructure. In this study, a reliable approach for fabricating low‐cost electrodes is presented by in situ growing high‐entropy phosphide nanoparticles on nickel foam (FeCoNiCuMnP/NF). This cost‐effective design is specifically engineered for alkaline methanol oxidation reactions (MOR), achieving a current density of 10 mA cm−2 at an applied voltage of only 1.32 V, while also demonstrating exceptional selectivity for formate products. Advanced Monte Carlo (ML‐MC) simulations identify copper as the predominant surface element and highlight phosphorus coordination as a key factor in enhancing catalytic activity. The field is advanced with a pioneering hybrid acid/alkali flow electrolyzer system, integrating FeCoNiCuMnP/NF anode and commercial RuIr/Ti cathode to enable indirect hydrogen liberation from methanol. This system requires an electrolytic voltage as low as 0.58 V to achieve a current density of 10 mA cm−2 and remains stable for hydrogen liberation over 300 h of operation. This achievement not only offers a highly efficient alternative to indirectly liberate H2 stored in methanol but also establishes a new benchmark for sustainable and economically viable H2 production.
甲醇作为氢载体为 H2 的储存和运输提供了一种实用的解决方案,但传统的重整工艺面临着效率低、二氧化碳排放量大以及需要专门基础设施等挑战。本研究通过在泡沫镍(FeCoNiCuMnP/NF)上原位生长高熵磷化物纳米粒子,提出了一种制造低成本电极的可靠方法。这种经济高效的设计专为碱性甲醇氧化反应 (MOR) 而设计,在仅 1.32 V 的外加电压下就能达到 10 mA cm-2 的电流密度,同时还表现出对甲酸产物的卓越选择性。先进的蒙特卡罗(ML-MC)模拟确定铜是主要的表面元素,并强调磷配位是提高催化活性的关键因素。酸碱混合流动电解槽系统开创了这一领域的先河,该系统集成了 FeCoNiCuMnP/NF 阳极和商用 RuIr/Ti 阴极,可从甲醇中间接析出氢气。该系统所需的电解电压低至 0.58 V,电流密度为 10 mA cm-2,并能在 300 小时的运行过程中保持稳定的析氢性能。这一成果不仅为间接释放储存在甲醇中的氢气提供了一种高效的替代方法,而且为可持续的、经济上可行的氢气生产确立了新的基准。
{"title":"High‐Entropy Phosphide Catalyst‐Based Hybrid Electrolyzer: A Cost‐Effective and Mild‐Condition Approach for H2 Liberation from Methanol","authors":"Xueting Zhao, Wei Sun, Xi Liu, Zhiwen Lu, Kai Chen, Jiyuan Gao, Junxiang Chen, Hao Zhang, Zhenhai Wen","doi":"10.1002/aenm.202404114","DOIUrl":"https://doi.org/10.1002/aenm.202404114","url":null,"abstract":"Methanol as a hydrogen carrier provides a practical solution for H<jats:sub>2</jats:sub> storage and transport, but traditional reforming faces challenges with low efficiency, CO<jats:sub>2</jats:sub> emissions, and the need for specialized infrastructure. In this study, a reliable approach for fabricating low‐cost electrodes is presented by in situ growing high‐entropy phosphide nanoparticles on nickel foam (FeCoNiCuMnP/NF). This cost‐effective design is specifically engineered for alkaline methanol oxidation reactions (MOR), achieving a current density of 10 mA cm<jats:sup>−2</jats:sup> at an applied voltage of only 1.32 V, while also demonstrating exceptional selectivity for formate products. Advanced Monte Carlo (ML‐MC) simulations identify copper as the predominant surface element and highlight phosphorus coordination as a key factor in enhancing catalytic activity. The field is advanced with a pioneering hybrid acid/alkali flow electrolyzer system, integrating FeCoNiCuMnP/NF anode and commercial RuIr/Ti cathode to enable indirect hydrogen liberation from methanol. This system requires an electrolytic voltage as low as 0.58 V to achieve a current density of 10 mA cm<jats:sup>−2</jats:sup> and remains stable for hydrogen liberation over 300 h of operation. This achievement not only offers a highly efficient alternative to indirectly liberate H<jats:sub>2</jats:sub> stored in methanol but also establishes a new benchmark for sustainable and economically viable H<jats:sub>2</jats:sub> production.","PeriodicalId":111,"journal":{"name":"Advanced Energy Materials","volume":"247 1","pages":""},"PeriodicalIF":27.8,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142642734","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unlocking Interfacial Interactions of In Situ Grown Multidimensional Bismuth‐Based Perovskite Heterostructures for Photocatalytic Hydrogen Evolution (Adv. Energy Mater. 43/2024) 揭示原位生长多维铋基过氧化物异质结构的界面相互作用,促进光催化氢气转化(Adv. Energy Mater.)
IF 27.8 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2024-11-16 DOI: 10.1002/aenm.202470187
Jianpei Feng, Chun Hong Mak, Guohua Jia, Bin Han, Hsin‐Hui Shen, Shella Permatasari Santoso, Ji‐Jung Kai, Mingjian Yuan, Haisheng Song, Juan Carlos Colmenares, Hsien‐Yi Hsu
{"title":"Unlocking Interfacial Interactions of In Situ Grown Multidimensional Bismuth‐Based Perovskite Heterostructures for Photocatalytic Hydrogen Evolution (Adv. Energy Mater. 43/2024)","authors":"Jianpei Feng, Chun Hong Mak, Guohua Jia, Bin Han, Hsin‐Hui Shen, Shella Permatasari Santoso, Ji‐Jung Kai, Mingjian Yuan, Haisheng Song, Juan Carlos Colmenares, Hsien‐Yi Hsu","doi":"10.1002/aenm.202470187","DOIUrl":"https://doi.org/10.1002/aenm.202470187","url":null,"abstract":"","PeriodicalId":111,"journal":{"name":"Advanced Energy Materials","volume":"21 1","pages":""},"PeriodicalIF":27.8,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142645953","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Advanced Energy Materials
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1