{"title":"Macro- and micro-mechanical behavior of CSU-LRS-1 lunar soil simulant under true triaxial loading path","authors":"Qixin Wu, Yafei Jia, Hao Wu, Zihao Yuan, Xuhai Tang, Yewei Zheng, Haifeng Zhao","doi":"10.1007/s10035-024-01437-z","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, a series of true triaxial tests with different intermediate principal stress ratios are conducted on both the lunar soil simulant and the sandy soils on earth using the discrete element method. An advanced discrete element servomechanism based on polyhedral specimen configuration is implemented such that true triaxial loading paths can be implemented under low confining pressure without introducing severe stress concentration. The high frictional angle and apparent cohesion of the lunar simulant are captured by employing a highly efficient contact model that fuses rolling resistance and van der Waals forces. The employed micro-scale parameters are calibrated based on the triaxial test results of the CSU-LRS-1 lunar soil simulant. The simulation results show that the lunar soil simulant exhibits lower shear strength with an increasing intermediate principal stress ratio. Generally, although the lunar soil simulant has a greater void ratio than that of sandy soils, the former exhibits significantly stronger shear-induced dilatancy and higher shear strength. The evolution of the load-bearing structure is quantified through a contact-normal-based fabric tensor. The interplay between internal structure evolution and external loadings can well explain the difference in mechanical behavior between lunar soil simulant and sandy soils on earth.</p></div>","PeriodicalId":49323,"journal":{"name":"Granular Matter","volume":"26 3","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Granular Matter","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10035-024-01437-z","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, a series of true triaxial tests with different intermediate principal stress ratios are conducted on both the lunar soil simulant and the sandy soils on earth using the discrete element method. An advanced discrete element servomechanism based on polyhedral specimen configuration is implemented such that true triaxial loading paths can be implemented under low confining pressure without introducing severe stress concentration. The high frictional angle and apparent cohesion of the lunar simulant are captured by employing a highly efficient contact model that fuses rolling resistance and van der Waals forces. The employed micro-scale parameters are calibrated based on the triaxial test results of the CSU-LRS-1 lunar soil simulant. The simulation results show that the lunar soil simulant exhibits lower shear strength with an increasing intermediate principal stress ratio. Generally, although the lunar soil simulant has a greater void ratio than that of sandy soils, the former exhibits significantly stronger shear-induced dilatancy and higher shear strength. The evolution of the load-bearing structure is quantified through a contact-normal-based fabric tensor. The interplay between internal structure evolution and external loadings can well explain the difference in mechanical behavior between lunar soil simulant and sandy soils on earth.
期刊介绍:
Although many phenomena observed in granular materials are still not yet fully understood, important contributions have been made to further our understanding using modern tools from statistical mechanics, micro-mechanics, and computational science.
These modern tools apply to disordered systems, phase transitions, instabilities or intermittent behavior and the performance of discrete particle simulations.
>> Until now, however, many of these results were only to be found scattered throughout the literature. Physicists are often unaware of the theories and results published by engineers or other fields - and vice versa.
The journal Granular Matter thus serves as an interdisciplinary platform of communication among researchers of various disciplines who are involved in the basic research on granular media. It helps to establish a common language and gather articles under one single roof that up to now have been spread over many journals in a variety of fields. Notwithstanding, highly applied or technical work is beyond the scope of this journal.