Atomic-iodine-substituted polydiacetylene nanospheres with boosted intersystem crossing and nonradiative transition through complete radiative transition blockade for ultraeffective phototherapy

IF 13.9 Q1 CHEMISTRY, MULTIDISCIPLINARY Aggregate (Hoboken, N.J.) Pub Date : 2024-05-10 DOI:10.1002/agt2.576
Dan Zhao, Lingling Zhang, Mingming Yin, Zhenyan He, Fang Fang, Minle Zhan, Sidan Tian, Fanling Meng, Liang Luo
{"title":"Atomic-iodine-substituted polydiacetylene nanospheres with boosted intersystem crossing and nonradiative transition through complete radiative transition blockade for ultraeffective phototherapy","authors":"Dan Zhao,&nbsp;Lingling Zhang,&nbsp;Mingming Yin,&nbsp;Zhenyan He,&nbsp;Fang Fang,&nbsp;Minle Zhan,&nbsp;Sidan Tian,&nbsp;Fanling Meng,&nbsp;Liang Luo","doi":"10.1002/agt2.576","DOIUrl":null,"url":null,"abstract":"<p>The energy dissipation pathways of a photosensitizer for phototherapies, including photodynamic therapy (PDT) and photothermal therapy (PTT), compete directly with that of its fluorescence (FL) emission. Enriching heavy atoms on the π-conjugated systems and aggregation-caused quenching are two effective methods to turn off the FL emission of photosensitizers, which is expected to boost the intersystem crossing (for PDT) and nonradiative transition (for PTT) of photosensitizers for maximized phototherapeutic efficacy. Following this approach, an all-iodine-substituted polydiacetylene aggregate poly(diiododiacetylene) (PIDA) has been developed, which shows a superior near infrared absorption (<i>ε</i><sub>808nm</sub> = 26.1 g<sup>−1</sup> cm<sup>−1</sup> L) with completely blocked FL, as well as high efficiency of reactive oxygen species generation (nearly 45 folds of indocyanine green) and photothermal conversion (33.4%). To make the insoluble fibrillar PIDA aggregates favorable for systemic administration, they are converted into nanospheres through a pre-polymerization morphology transformation strategy. The in vivo study on a 4T1 tumor-bearing mouse model demonstrates that PIDA nanospheres can almost eliminate the tumor entirely in 16 days and prolong the survival time of mice to over 60 days, validating their effective phototherapeutic response through the strategy of inhibiting FL for boosted intersystem crossing and nonradiative transition.</p>","PeriodicalId":72127,"journal":{"name":"Aggregate (Hoboken, N.J.)","volume":"5 5","pages":""},"PeriodicalIF":13.9000,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/agt2.576","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aggregate (Hoboken, N.J.)","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/agt2.576","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The energy dissipation pathways of a photosensitizer for phototherapies, including photodynamic therapy (PDT) and photothermal therapy (PTT), compete directly with that of its fluorescence (FL) emission. Enriching heavy atoms on the π-conjugated systems and aggregation-caused quenching are two effective methods to turn off the FL emission of photosensitizers, which is expected to boost the intersystem crossing (for PDT) and nonradiative transition (for PTT) of photosensitizers for maximized phototherapeutic efficacy. Following this approach, an all-iodine-substituted polydiacetylene aggregate poly(diiododiacetylene) (PIDA) has been developed, which shows a superior near infrared absorption (ε808nm = 26.1 g−1 cm−1 L) with completely blocked FL, as well as high efficiency of reactive oxygen species generation (nearly 45 folds of indocyanine green) and photothermal conversion (33.4%). To make the insoluble fibrillar PIDA aggregates favorable for systemic administration, they are converted into nanospheres through a pre-polymerization morphology transformation strategy. The in vivo study on a 4T1 tumor-bearing mouse model demonstrates that PIDA nanospheres can almost eliminate the tumor entirely in 16 days and prolong the survival time of mice to over 60 days, validating their effective phototherapeutic response through the strategy of inhibiting FL for boosted intersystem crossing and nonradiative transition.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
原子碘取代聚二乙烯纳米球,通过完全辐射转变阻断促进系统间交叉和非辐射转变,用于超高效光疗
光敏剂用于光疗法(包括光动力疗法(PDT)和光热疗法(PTT))的能量耗散途径与其荧光(FL)发射途径直接竞争。富集π共轭体系上的重原子和聚集引起的淬灭是关闭光敏剂FL发射的两种有效方法,这有望促进光敏剂的体系间穿越(用于PDT)和非辐射转变(用于PTT),从而最大限度地提高光疗效果。按照这种方法,我们开发出了一种全碘取代的聚二乙烯聚合体聚(二碘二乙烯)(PIDA),它具有优异的近红外吸收(ε808nm = 26.1 g-1 cm-1 L)和完全阻断的FL,以及高效的活性氧生成(接近吲哚菁绿(indocyanine green)的45倍)和光热转换(33.4%)。为了使不溶性纤维状 PIDA 聚集体有利于全身给药,通过预聚合形态转化策略将其转化为纳米球。对 4T1 肿瘤小鼠模型的体内研究表明,PIDA 纳米球可在 16 天内几乎完全消除肿瘤,并将小鼠的存活时间延长至 60 天以上,验证了其通过抑制 FL 促进系统间交叉和非辐射转变的策略所产生的有效光疗反应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
17.40
自引率
0.00%
发文量
0
审稿时长
7 weeks
期刊最新文献
Issue Information Back Cover: Droplets Cas13a-RPA measurement delineates potential role for plasma circWDR37 in colorectal cancer Front Cover: Near-room-temperature π-conjugated nematic liquid crystals in molecules with a flexible seven-membered ring structure Inside Front Cover: Fluorescence imaging-guided lipid droplets-localized photodynamic therapy Inside Back Cover: Revealing enhanced dilution effect of conjugated polymers in partially miscible blends
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1