Zeineb Ayed, Abdallah Alhalabi, Didier Gasparutto, Xavier Le Guével
Gold nanoclusters (AuNCs) are ultrasmall (<2 nm) aggregates of gold atoms that exhibit discrete electronic states, size-dependent photoluminescence, and exceptional biocompatibility, making them ideal candidates for theranostic applications. Their tunable surface chemistry enables targeted delivery, while strong near-infrared emission and environmental responsiveness allow for sensitive detection and deep-tissue imaging. Recent advances have revealed that controlled assembly of AuNCs into higher-order architectures—guided by biological scaffolds such as nucleic acids, peptides, and proteins—can markedly enhance their optical and electronic properties through aggregation-induced emission (AIE) and stabilization of surface ligands.
This review summarizes recent progress in the design and biomedical applications of AuNC assemblies generated using biomolecules as structure-directing scaffolds. Covalent and noncovalent interactions with biomolecules enable the formation of well-defined one-, two-, and three-dimensional structures with tunable morphologies and sizes. These assemblies display distinctive photophysical behaviors that have been exploited for biosensing, bioimaging, and therapeutic applications in both cellular and in vivo models. Compared with individual AuNCs, assembled systems offer improved uptake, prolonged circulation, and efficient clearance, while protecting labile cargos such as nucleic acids and proteins. Moreover, their ordered and defined architectures can be engineered for controlled drug release and synergistic photo- or radiotherapeutic effects.
Despite these advances, fundamental understanding of how structural organization governs photophysical responses remains limited. Elucidating parameters such as intercluster spacing and loading density will be essential for optimizing performance. Overall, biologically guided AuNC assemblies represent a powerful platform for multifunctional biosensing and therapy, bridging nanoscale design with biological function.
{"title":"Biological Templates for Gold Nanocluster Assembly: Design and Biomedical Applications","authors":"Zeineb Ayed, Abdallah Alhalabi, Didier Gasparutto, Xavier Le Guével","doi":"10.1002/agt2.70261","DOIUrl":"https://doi.org/10.1002/agt2.70261","url":null,"abstract":"<p>Gold nanoclusters (AuNCs) are ultrasmall (<2 nm) aggregates of gold atoms that exhibit discrete electronic states, size-dependent photoluminescence, and exceptional biocompatibility, making them ideal candidates for theranostic applications. Their tunable surface chemistry enables targeted delivery, while strong near-infrared emission and environmental responsiveness allow for sensitive detection and deep-tissue imaging. Recent advances have revealed that controlled assembly of AuNCs into higher-order architectures—guided by biological scaffolds such as nucleic acids, peptides, and proteins—can markedly enhance their optical and electronic properties through aggregation-induced emission (AIE) and stabilization of surface ligands.</p><p>This review summarizes recent progress in the design and biomedical applications of AuNC assemblies generated using biomolecules as structure-directing scaffolds. Covalent and noncovalent interactions with biomolecules enable the formation of well-defined one-, two-, and three-dimensional structures with tunable morphologies and sizes. These assemblies display distinctive photophysical behaviors that have been exploited for biosensing, bioimaging, and therapeutic applications in both cellular and in vivo models. Compared with individual AuNCs, assembled systems offer improved uptake, prolonged circulation, and efficient clearance, while protecting labile cargos such as nucleic acids and proteins. Moreover, their ordered and defined architectures can be engineered for controlled drug release and synergistic photo- or radiotherapeutic effects.</p><p>Despite these advances, fundamental understanding of how structural organization governs photophysical responses remains limited. Elucidating parameters such as intercluster spacing and loading density will be essential for optimizing performance. Overall, biologically guided AuNC assemblies represent a powerful platform for multifunctional biosensing and therapy, bridging nanoscale design with biological function.</p>","PeriodicalId":72127,"journal":{"name":"Aggregate (Hoboken, N.J.)","volume":"7 2","pages":""},"PeriodicalIF":13.7,"publicationDate":"2026-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/agt2.70261","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146148002","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Organic room-temperature phosphorescence (RTP) materials are promising for bioimaging applications due to their tunable structures, excellent biocompatibility, and long-lived luminescence. However, the development of highly efficient organic RTP materials for aqueous systems remains challenging, as the organic phosphorescence is prone to being quenched by the dissolved oxygen in water. Herein, heteroaromatic carboxylic acids serve as ligand guests to construct a series of host-guest composites with nontoxic, dense EDTA-M (M = Ca, Mg, and Al) coordination polymer in water. These composites exhibit ultra-long pure RTP of guest molecules with phosphorescence quantum yield up to 53%, and lifetime up to 589.7 ms, due to the synergistic effect of dual-network structure: a coordinatively cross-linked network of EDTA-M, and a non-covalent bonded network formed by ligands and water molecules. The phosphorescence intensity is more than three times that of the composite with a single coordination network. Notably, the dual-network configuration can form a rigid and dense structure and block the intrusion of external H2O and O2 molecules to avoid phosphorescence quenching in water. As a result, the RTP of the composites remains unchanged after 1 month in water. Furthermore, the nanoparticles fabricated from composites and anionic surfactants can be successfully applied in in vivo imaging of mice for the stable RTP in water. This work provides a novel strategy for the development of high-performance RTP materials in aqueous systems.
{"title":"Dual-Network Restriction in Dense EDTA-Metal Coordination Polymers for Highly Efficient and Stable Organic RTP in Aqueous System","authors":"Xin Zheng, Yongling Liu, Suhua Jiang, Jinyun Zhao, Peiyuan Wang, Yuanshan Huang, Zhenghuan Lin","doi":"10.1002/agt2.70290","DOIUrl":"https://doi.org/10.1002/agt2.70290","url":null,"abstract":"<p>Organic room-temperature phosphorescence (RTP) materials are promising for bioimaging applications due to their tunable structures, excellent biocompatibility, and long-lived luminescence. However, the development of highly efficient organic RTP materials for aqueous systems remains challenging, as the organic phosphorescence is prone to being quenched by the dissolved oxygen in water. Herein, heteroaromatic carboxylic acids serve as ligand guests to construct a series of host-guest composites with nontoxic, dense EDTA-M (M = Ca, Mg, and Al) coordination polymer in water. These composites exhibit ultra-long pure RTP of guest molecules with phosphorescence quantum yield up to 53%, and lifetime up to 589.7 ms, due to the synergistic effect of dual-network structure: a coordinatively cross-linked network of EDTA-M, and a non-covalent bonded network formed by ligands and water molecules. The phosphorescence intensity is more than three times that of the composite with a single coordination network. Notably, the dual-network configuration can form a rigid and dense structure and block the intrusion of external H<sub>2</sub>O and O<sub>2</sub> molecules to avoid phosphorescence quenching in water. As a result, the RTP of the composites remains unchanged after 1 month in water. Furthermore, the nanoparticles fabricated from composites and anionic surfactants can be successfully applied in in vivo imaging of mice for the stable RTP in water. This work provides a novel strategy for the development of high-performance RTP materials in aqueous systems.</p>","PeriodicalId":72127,"journal":{"name":"Aggregate (Hoboken, N.J.)","volume":"7 2","pages":""},"PeriodicalIF":13.7,"publicationDate":"2026-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/agt2.70290","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146148000","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Fluorescent RNA aptamers offer promising opportunities for next-generation biosensing but are often limited by low signal-to-background ratios and unstable folding kinetics. In this work, a label-free Förster resonance energy transfer (FRET)-enhanced fluorescent artificial RNA condensate (F-FARCON) is developed for small-molecule sensing, leveraging neutral molecular crowders (e.g., polyethylene glycol 8K), and RNA structural motifs to induce multivalent interactions and drive dynamic self-assembly. As a demonstration, a label-free FRET system is constructed by integrating a histamine-responsive RNA aptamer with thioflavin T (ThT) as the fluorescence donor, which increases the signal-to-noise ratio while reducing sequence complexity and production costs. Molecular crowders optimize the thermodynamic environment of RNA–ligand and RNA–RNA multivalent interactions, thereby improving folding stability, signal amplitude (dynamic range of up to ∼970-fold), and target affinity. The platform exhibits fast kinetics (<15 min), an adjustable detection range (0.1–200 and 5–1000 µM), and high sensitivity (limit of detection, 15.36 nM), with robust performance in complex biological matrices. The platform is further integrated into a freeze-dried paper-based portable device that enables dual-channel fluorescence readout for on-site rapid detection without sophisticated instrumentation. To further validate the modularity of F-FARCON beyond histamine, we reprogrammed the recognition module to target S-adenosyl-L-methionine (SAM), achieving nanomolar limits of detection. By linking crowding-guided assembly to hierarchical photophysical enhancement and analytical performance, the work delineates a generalizable aggregate-science route to versatile, low-cost, and field-deployable fluorescence sensing across food safety, environmental monitoring, and biomedical diagnostics.
{"title":"Molecular Crowding-Driven RNA Condensates Enable Förster Resonance Energy Transfer-Enhanced Small-Molecule Sensing","authors":"Yifan Wu, Xuan Ma, Yanger Liu, Zhaoxuan Zhang, Yangzi Zhang, Wenqiang Zhang, Longjiao Zhu, Wentao Xu","doi":"10.1002/agt2.70284","DOIUrl":"https://doi.org/10.1002/agt2.70284","url":null,"abstract":"<p>Fluorescent RNA aptamers offer promising opportunities for next-generation biosensing but are often limited by low signal-to-background ratios and unstable folding kinetics. In this work, a label-free Förster resonance energy transfer (FRET)-enhanced fluorescent artificial RNA condensate (F-FARCON) is developed for small-molecule sensing, leveraging neutral molecular crowders (e.g., polyethylene glycol 8K), and RNA structural motifs to induce multivalent interactions and drive dynamic self-assembly. As a demonstration, a label-free FRET system is constructed by integrating a histamine-responsive RNA aptamer with thioflavin T (ThT) as the fluorescence donor, which increases the signal-to-noise ratio while reducing sequence complexity and production costs. Molecular crowders optimize the thermodynamic environment of RNA–ligand and RNA–RNA multivalent interactions, thereby improving folding stability, signal amplitude (dynamic range of up to ∼970-fold), and target affinity. The platform exhibits fast kinetics (<15 min), an adjustable detection range (0.1–200 and 5–1000 µM), and high sensitivity (limit of detection, 15.36 nM), with robust performance in complex biological matrices. The platform is further integrated into a freeze-dried paper-based portable device that enables dual-channel fluorescence readout for on-site rapid detection without sophisticated instrumentation. To further validate the modularity of F-FARCON beyond histamine, we reprogrammed the recognition module to target S-adenosyl-L-methionine (SAM), achieving nanomolar limits of detection. By linking crowding-guided assembly to hierarchical photophysical enhancement and analytical performance, the work delineates a generalizable aggregate-science route to versatile, low-cost, and field-deployable fluorescence sensing across food safety, environmental monitoring, and biomedical diagnostics.</p>","PeriodicalId":72127,"journal":{"name":"Aggregate (Hoboken, N.J.)","volume":"7 2","pages":""},"PeriodicalIF":13.7,"publicationDate":"2026-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/agt2.70284","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146135861","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Metal nanoclusters (MNCs), comprising several to hundreds of metal atoms, have attracted significant research interest owing to their distinctive physicochemical properties. Reticular frameworks (RFs) with ordered porous structures, including metal–organic frameworks (MOFs), covalent organic frameworks (COFs), hydrogen-bonded organic frameworks (HOFs), and supramolecular organic frameworks (SOFs), possess a variety of unique properties due to their high crystallinity, high porosity, large surface area, and adjustable structure. The integration of MNCs with RFs endows the resulting composites with desirable features (e.g., enhanced and tunable optical properties, improved catalytic and photophysical activities, selective molecular recognition), which facilitates a broad spectrum of biomedical applications and advancing the development of integrated theranostic nanoplatforms. This review summarizes recent advances in the synthesis and biomedical applications of various MNCs/RFs composites. We systematically categorize and evaluate key strategies for incorporating MNCs into four types of RFs (MOFs, COFs, HOFs, and SOFs) while discussing the advantages and limitations of each approach. The biomedical applications of these composites are comprehensively reviewed, encompassing biosensing, bioimaging, antitumor therapy, and antibacterial treatments. Finally, the review addresses current challenges and outlines future research directions, with the aim of guiding the rational design of novel MNCs/RFs composites, enabling precise control over their structures and functions toward advanced biomedical applications.
{"title":"The Marriage of Metal Nanoclusters With Reticular Frameworks: Synthetic Strategies and Biomedical Applications","authors":"Wenfeng Liu, Qinyin Yin, Li-Li Tan, Li Shang","doi":"10.1002/agt2.70274","DOIUrl":"10.1002/agt2.70274","url":null,"abstract":"<p>Metal nanoclusters (MNCs), comprising several to hundreds of metal atoms, have attracted significant research interest owing to their distinctive physicochemical properties. Reticular frameworks (RFs) with ordered porous structures, including metal–organic frameworks (MOFs), covalent organic frameworks (COFs), hydrogen-bonded organic frameworks (HOFs), and supramolecular organic frameworks (SOFs), possess a variety of unique properties due to their high crystallinity, high porosity, large surface area, and adjustable structure. The integration of MNCs with RFs endows the resulting composites with desirable features (e.g., enhanced and tunable optical properties, improved catalytic and photophysical activities, selective molecular recognition), which facilitates a broad spectrum of biomedical applications and advancing the development of integrated theranostic nanoplatforms. This review summarizes recent advances in the synthesis and biomedical applications of various MNCs/RFs composites. We systematically categorize and evaluate key strategies for incorporating MNCs into four types of RFs (MOFs, COFs, HOFs, and SOFs) while discussing the advantages and limitations of each approach. The biomedical applications of these composites are comprehensively reviewed, encompassing biosensing, bioimaging, antitumor therapy, and antibacterial treatments. Finally, the review addresses current challenges and outlines future research directions, with the aim of guiding the rational design of novel MNCs/RFs composites, enabling precise control over their structures and functions toward advanced biomedical applications.</p>","PeriodicalId":72127,"journal":{"name":"Aggregate (Hoboken, N.J.)","volume":"7 2","pages":""},"PeriodicalIF":13.7,"publicationDate":"2026-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/agt2.70274","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146140240","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Haishuo Ji, Yaling Wang, Kexin Yao, Junjie Li, Hang Luo, Wangzhe Li, Yanxin Gao, Wenjin Li, Qi Xiao, Tin Pou Lai, Chunxiao Chen, Xueying Li, Qian Peng, Chunqiu Zhang, Baofa Sun, Liyun Zhang
The inherent oxygen sensitivity of hydrogenases has limited their biomedical use. We report a hybrid peptide–nanocluster hydrogel that establishes a self-sustained anaerobic microenvironment, enabling hydrogenase-catalyzed hydrogen therapy under aerobic conditions. The Fmoc-KYF peptide network traps O2 in hydrophobic pockets, while photoexcited silver nanoclusters rapidly scavenge residual oxygen, ensuring stable hydrogen evolution. In vitro, the generated hydrogen mitigates oxidative stress and inflammation. In diabetic mice, the light-activated system accelerates wound closure, promotes angiogenesis, and drives macrophage polarization toward a reparative phenotype. This study introduces a bioengineering strategy that integrates material design, enzyme catalysis, and photodynamics to overcome oxygen limitation and advance hydrogenase-based therapeutic applications.
{"title":"Engineering an Anaerobic Microenvironment to Empower Hydrogenase-Catalyzed Hydrogen Therapy for Diabetic Wound Healing","authors":"Haishuo Ji, Yaling Wang, Kexin Yao, Junjie Li, Hang Luo, Wangzhe Li, Yanxin Gao, Wenjin Li, Qi Xiao, Tin Pou Lai, Chunxiao Chen, Xueying Li, Qian Peng, Chunqiu Zhang, Baofa Sun, Liyun Zhang","doi":"10.1002/agt2.70285","DOIUrl":"https://doi.org/10.1002/agt2.70285","url":null,"abstract":"<p>The inherent oxygen sensitivity of hydrogenases has limited their biomedical use. We report a hybrid peptide–nanocluster hydrogel that establishes a self-sustained anaerobic microenvironment, enabling hydrogenase-catalyzed hydrogen therapy under aerobic conditions. The Fmoc-KYF peptide network traps O<sub>2</sub> in hydrophobic pockets, while photoexcited silver nanoclusters rapidly scavenge residual oxygen, ensuring stable hydrogen evolution. In vitro, the generated hydrogen mitigates oxidative stress and inflammation. In diabetic mice, the light-activated system accelerates wound closure, promotes angiogenesis, and drives macrophage polarization toward a reparative phenotype. This study introduces a bioengineering strategy that integrates material design, enzyme catalysis, and photodynamics to overcome oxygen limitation and advance hydrogenase-based therapeutic applications.</p>","PeriodicalId":72127,"journal":{"name":"Aggregate (Hoboken, N.J.)","volume":"7 2","pages":""},"PeriodicalIF":13.7,"publicationDate":"2026-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/agt2.70285","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146148311","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The strong electron–phonon coupling in organic photovoltaic materials significantly impedes exciton transport and promotes charge recombination, thereby exerting a detrimental effect on the overall performance of organic solar cells (OSCs). Mitigating electron–phonon coupling is therefore essential for developing high-performance OSCs. In this work, we introduce two solid additives, 1-bromo-3-chloronaphthalene (BCN-1) and 1-chloro-3-bromonaphthalene (BCN-2), into the bulk heterojunction active layer to address this fundamental challenge. We demonstrate that BCN-2 effectively suppresses high-frequency lattice vibrations, which minimizes electron–phonon scattering and thereby promotes efficient and long-range exciton diffusion. As a result, the BCN-2 processed devices exhibit prolonged exciton lifetime and superior charge carrier mobility compared to the control devices. These synergistic improvements in photophysical properties such as charge transport, contribute to a remarkable power conversion efficiency of 19.72% in the PM6:L8-BO-based OSCs. This work underscores the suppression of electron–phonon coupling as a critical and general strategy for advancing the performance of organic photovoltaic devices.
{"title":"Suppressing Electron–Phonon Coupling via Solid Additives for High-Performance Organic Solar Cells","authors":"Misbah Sehar Abbasi, Zequn Zhang, Ziyang Han, Jikai Lv, Song Wang, Siying Wang, Yi Feng, Jiarui Wang, Guanghao Zhang, Nida Wali, Zihao Xu, Qian Peng, Yunhao Cai, Hui Huang","doi":"10.1002/agt2.70268","DOIUrl":"10.1002/agt2.70268","url":null,"abstract":"<p>The strong electron–phonon coupling in organic photovoltaic materials significantly impedes exciton transport and promotes charge recombination, thereby exerting a detrimental effect on the overall performance of organic solar cells (OSCs). Mitigating electron–phonon coupling is therefore essential for developing high-performance OSCs. In this work, we introduce two solid additives, 1-bromo-3-chloronaphthalene (BCN-1) and 1-chloro-3-bromonaphthalene (BCN-2), into the bulk heterojunction active layer to address this fundamental challenge. We demonstrate that BCN-2 effectively suppresses high-frequency lattice vibrations, which minimizes electron–phonon scattering and thereby promotes efficient and long-range exciton diffusion. As a result, the BCN-2 processed devices exhibit prolonged exciton lifetime and superior charge carrier mobility compared to the control devices. These synergistic improvements in photophysical properties such as charge transport, contribute to a remarkable power conversion efficiency of 19.72% in the PM6:L8-BO-based OSCs. This work underscores the suppression of electron–phonon coupling as a critical and general strategy for advancing the performance of organic photovoltaic devices.</p>","PeriodicalId":72127,"journal":{"name":"Aggregate (Hoboken, N.J.)","volume":"7 2","pages":""},"PeriodicalIF":13.7,"publicationDate":"2026-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/agt2.70268","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146136813","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ionic phototheranostic agents have found extensive application in preclinical and clinical practice owing to their excellent biocompatibility and synergistic diagnostic–therapeutic integration. However, they still suffer from certain limitations, such as short absorption/emission wavelengths, poor photostability, aggregation-caused fluorescence self-quenching, and diminished phototherapeutic efficacy upon aggregation, which collectively hinder their efficacy in complex clinical scenarios. To address these challenges, a second near-infrared (NIR-II) ionic phototheranostic agent, namely DT-BT-BIn, is rationally designed and synthesized via an innovative dual-acceptor engineering strategy. DT-BT-BIn ingeniously integrates benzothiadiazole and benzo[c,d]indolium as dual-acceptor units, which successfully achieves superior aggregation-induced NIR-II emission characteristics, highly efficient Type I/II photodynamic activity coupled with photothermal effect, and excellent photostability. Moreover, the self-assembled DT-BT-BIn nanoprobes (NPs) can be effectively internalized by cancer cells in vitro. Under irradiation, DT-BT-BIn NPs are capable of disrupting mitochondrial membrane potential, thereby inducing apoptotic cell death. Furthermore, in vivo investigations demonstrate DT-BT-BIn NPs can effectively accumulate at tumor location, enabling NIR-II fluorescence/photothermal imaging-guided precise tumor ablation, while simultaneously maintaining favorable biosafety toward normal tissues. Collectively, this study underscores the considerable promise of the dual-acceptor strategy in constructing high-performance NIR-II ionic phototheranostic agents and provides a new avenue for clinical precision cancer phototherapy.
{"title":"A Dual-Acceptor Engineered Second Near-Infrared Ionic Aggregation-Induced Emission Luminogen for Mitochondria-Disrupted Cancer Phototheranostics","authors":"Yuanyuan You, Songling Lin, Chengwei Tang, Qiongwen Liang, Huachan Deng, Lu Li, Yuxun Ding, Jiayi Chen, Jiachun Chen, Dingyuan Yan, Dong Wang, Xiaohui Chen","doi":"10.1002/agt2.70281","DOIUrl":"10.1002/agt2.70281","url":null,"abstract":"<p>Ionic phototheranostic agents have found extensive application in preclinical and clinical practice owing to their excellent biocompatibility and synergistic diagnostic–therapeutic integration. However, they still suffer from certain limitations, such as short absorption/emission wavelengths, poor photostability, aggregation-caused fluorescence self-quenching, and diminished phototherapeutic efficacy upon aggregation, which collectively hinder their efficacy in complex clinical scenarios. To address these challenges, a second near-infrared (NIR-II) ionic phototheranostic agent, namely DT-BT-BIn, is rationally designed and synthesized via an innovative dual-acceptor engineering strategy. DT-BT-BIn ingeniously integrates benzothiadiazole and benzo[<i>c,d</i>]indolium as dual-acceptor units, which successfully achieves superior aggregation-induced NIR-II emission characteristics, highly efficient Type I/II photodynamic activity coupled with photothermal effect, and excellent photostability. Moreover, the self-assembled DT-BT-BIn nanoprobes (NPs) can be effectively internalized by cancer cells in vitro. Under irradiation, DT-BT-BIn NPs are capable of disrupting mitochondrial membrane potential, thereby inducing apoptotic cell death. Furthermore, in vivo investigations demonstrate DT-BT-BIn NPs can effectively accumulate at tumor location, enabling NIR-II fluorescence/photothermal imaging-guided precise tumor ablation, while simultaneously maintaining favorable biosafety toward normal tissues. Collectively, this study underscores the considerable promise of the dual-acceptor strategy in constructing high-performance NIR-II ionic phototheranostic agents and provides a new avenue for clinical precision cancer phototherapy.</p>","PeriodicalId":72127,"journal":{"name":"Aggregate (Hoboken, N.J.)","volume":"7 2","pages":""},"PeriodicalIF":13.7,"publicationDate":"2026-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/agt2.70281","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146136546","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mengjiao Zhang, Xuan He, Shengyong Deng, Yadong Shi, Peifa Wei
Solvents in crystalline materials typically exist either as structural components that stabilize the framework or as adsorbed guests that modulate properties, yet achieving their orthogonal coexistence within a single system remains challenging. This study proposes a natural mineral-inspired solvent hierarchy strategy that enables the concurrent achievement of framework stability and dynamic responsiveness in hydrogen-bonded organic frameworks (HOFs) through the orthogonal integration of structural and adsorbed solvents. We have validated the feasibility of this solvent hierarchy approach based on four model systems with progressively increasing stability and dynamism: (1) unstable HOFs containing only adsorbed solvents, (2) unstable HOFs with low-binding-energy structural solvents, (3) stable HOFs incorporating strong-fitted structural solvents, and (4) stable HOFs with structural solvents and dynamically adjustable adsorption solvents. Crystallographic and theoretical analyses reveal that the superior stability of structural solvents originates from the high-electron-density oxygen of the DMSO S═O bond, which acts as a strong hydrogen-bond acceptor, forming stable N─H···O═S bonds with amine groups. The host's aggregation-induced emission (AIE) characteristics allow real-time optical monitoring of reversible single-crystal-to-single-crystal transformations without compromising structural integrity, demonstrating promising applications for visual water content and water leakage detection. This work not only establishes a new paradigm in solvent engineering for developing smart crystalline materials but also expands the design possibilities for functional porous frameworks.
晶体材料中的溶剂通常要么作为稳定框架的结构成分存在,要么作为调节性能的吸附客体存在,然而在单一系统中实现它们的正交共存仍然是一个挑战。本研究提出了一种天然矿物启发的溶剂层次策略,通过结构溶剂和吸附溶剂的正交整合,使氢键有机框架(HOFs)的框架稳定性和动态响应性同时实现。我们基于四个稳定性和动力学逐渐增加的模型系统验证了这种溶剂层次方法的可行性:(1)只含有吸附溶剂的不稳定HOFs,(2)含有低结合能结构溶剂的不稳定HOFs,(3)含有强拟合结构溶剂的稳定HOFs,以及(4)含有结构溶剂和动态可调吸附溶剂的稳定HOFs。晶体学和理论分析表明,结构溶剂的优异稳定性源于DMSO S = O键的高电子密度氧,它作为强氢键受体,与胺基形成稳定的N─H···O = S键。宿主体的聚集诱导发射(AIE)特性允许在不影响结构完整性的情况下对可逆的单晶到单晶转换进行实时光学监测,展示了在视觉含水量和漏水检测方面的有前途的应用。这项工作不仅为开发智能晶体材料的溶剂工程建立了新的范例,而且扩大了功能性多孔框架的设计可能性。
{"title":"Solvent Hierarchy in Hydrogen-Bonded Organic Frameworks Enables Orthogonal Stability and Dynamic Responsiveness","authors":"Mengjiao Zhang, Xuan He, Shengyong Deng, Yadong Shi, Peifa Wei","doi":"10.1002/agt2.70283","DOIUrl":"https://doi.org/10.1002/agt2.70283","url":null,"abstract":"<p>Solvents in crystalline materials typically exist either as structural components that stabilize the framework or as adsorbed guests that modulate properties, yet achieving their orthogonal coexistence within a single system remains challenging. This study proposes a natural mineral-inspired solvent hierarchy strategy that enables the concurrent achievement of framework stability and dynamic responsiveness in hydrogen-bonded organic frameworks (HOFs) through the orthogonal integration of structural and adsorbed solvents. We have validated the feasibility of this solvent hierarchy approach based on four model systems with progressively increasing stability and dynamism: (1) unstable HOFs containing only adsorbed solvents, (2) unstable HOFs with low-binding-energy structural solvents, (3) stable HOFs incorporating strong-fitted structural solvents, and (4) stable HOFs with structural solvents and dynamically adjustable adsorption solvents. Crystallographic and theoretical analyses reveal that the superior stability of structural solvents originates from the high-electron-density oxygen of the DMSO S═O bond, which acts as a strong hydrogen-bond acceptor, forming stable N─H···O═S bonds with amine groups. The host's aggregation-induced emission (AIE) characteristics allow real-time optical monitoring of reversible single-crystal-to-single-crystal transformations without compromising structural integrity, demonstrating promising applications for visual water content and water leakage detection. This work not only establishes a new paradigm in solvent engineering for developing smart crystalline materials but also expands the design possibilities for functional porous frameworks.</p>","PeriodicalId":72127,"journal":{"name":"Aggregate (Hoboken, N.J.)","volume":"7 2","pages":""},"PeriodicalIF":13.7,"publicationDate":"2026-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/agt2.70283","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146148231","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Organic semiconductor lasers are attractive for low thresholds and cost, but triplet accumulation hampers their electrically pumped development. Compared to existing organic lasing materials, triplet-triplet annihilation (TTA) systems are capable of tolerating high triplet concentrations and may facilitate stable laser emission under electrical pumping. To avoid energy losses in doped multicomponent TTA systems, herein, we report an organic semiconductor lasing material BH001 with TTA properties, which combines concurrent triplet harvesting and lasing within a single molecular framework. Dislocations between π-conjugated planes reduce π-π stacking-induced fluorescence quenching, yielding high photoluminescence quantum yield (PLQY) in the crystal. The TTA process in BH001 can be observed through a color change from red to blue by the sensitization of PtOEP. Given that nanosecond/femtosecond transient absorption (ns-TA and fs-TA) spectroscopy has demonstrated the appreciable ability of BH001 to generate triplet states, TTA-delayed fluorescence of pure BH001 crystal was directly detected using a streak camera. A laser constructed from this TTA crystal achieved low-threshold blue emission at 440 nm (Pth = 15.4 µJ/cm2), which is increased in an oxygen atmosphere, suggesting the involvement of triplets. Upon excitation with nanosecond laser pulses that are more prone to cause triplet stacking, the BH001 crystal exhibits stimulated emission behavior. This study demonstrates a lasing molecule with TTA properties, highlighting its potential in continuous wave (CW) pumped and ultimately electrically pumped systems.
{"title":"An Organic Semiconductor Lasing Crystal Featuring Triplet-Triplet Annihilation","authors":"Tianhao Tang, Hao Gong, Fei Yu, Fengqing Jiao, Juye Zhu, Junyou Pan, Pingyang Wang, Shihong Song, Fangqing Ge, Zhijia Wang, Yishi Wu, Hongbing Fu","doi":"10.1002/agt2.70278","DOIUrl":"https://doi.org/10.1002/agt2.70278","url":null,"abstract":"<p>Organic semiconductor lasers are attractive for low thresholds and cost, but triplet accumulation hampers their electrically pumped development. Compared to existing organic lasing materials, triplet-triplet annihilation (TTA) systems are capable of tolerating high triplet concentrations and may facilitate stable laser emission under electrical pumping. To avoid energy losses in doped multicomponent TTA systems, herein, we report an organic semiconductor lasing material BH001 with TTA properties, which combines concurrent triplet harvesting and lasing within a single molecular framework. Dislocations between π-conjugated planes reduce π-π stacking-induced fluorescence quenching, yielding high photoluminescence quantum yield (PLQY) in the crystal. The TTA process in BH001 can be observed through a color change from red to blue by the sensitization of PtOEP. Given that nanosecond/femtosecond transient absorption (ns-TA and fs-TA) spectroscopy has demonstrated the appreciable ability of BH001 to generate triplet states, TTA-delayed fluorescence of pure BH001 crystal was directly detected using a streak camera. A laser constructed from this TTA crystal achieved low-threshold blue emission at 440 nm (<i>P</i><sub>th</sub> = 15.4 µJ/cm<sup>2</sup>), which is increased in an oxygen atmosphere, suggesting the involvement of triplets. Upon excitation with nanosecond laser pulses that are more prone to cause triplet stacking, the BH001 crystal exhibits stimulated emission behavior. This study demonstrates a lasing molecule with TTA properties, highlighting its potential in continuous wave (CW) pumped and ultimately electrically pumped systems.</p>","PeriodicalId":72127,"journal":{"name":"Aggregate (Hoboken, N.J.)","volume":"7 2","pages":""},"PeriodicalIF":13.7,"publicationDate":"2026-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/agt2.70278","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146148232","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wei Xuan Wilson Loo, Jia Shen Sio, Keyin Yap, Yan Shan Loo, Hui Xuan Lim, Shuangyue Zhang, Huitao Liu, Chen Seng Ng
Protein aggregation drives proteinopathies ranging from ALS to systemic amyloidosis, yet the multiscale determinants bridging sequence, structure, and kinetics remain elusive. We present SKALE, an interpretable machine learning framework that integrates sequence motifs, AlphaFold-derived structural descriptors, and experimental kinetics to decode aggregation mechanisms. SKALE identifies latent hotspots that evade conventional tools and matches high-performing neural baselines while preserving computational efficiency. In ALS-linked SOD1 G86R, the model isolates a risk region at residues 72–91 where preserved β-sheet geometry coincides with weakened hydrogen bonding to drive nucleation. Similarly, analysis of TDP-43 S332N reveals that a locally unwound helix increases surface exposure, a prediction validated by showing that targeted deletion of model-identified regions significantly reduces cellular aggregation. The framework generalizes to Tau P301L and PRNP variants where it uncovers distal aggregation-prone regions to discriminate pathogenic drivers from neutral mutations. Interpretability analysis further disentangles global from mutation-local mechanisms to reveal that β-sheet propensity acts as a shared determinant while hydrogen bond dynamics define specific routes to nucleation. These findings establish SKALE as a scalable, disease-agnostic engine that combines high-fidelity prediction with biophysical resolution to decode the molecular logic of misfolding and guide therapeutic design.
{"title":"SKALE: An Interpretable Multiscale Machine Learning Model for Decoding Phase-Specific Protein Aggregation in Neurodegenerative Proteinopathies","authors":"Wei Xuan Wilson Loo, Jia Shen Sio, Keyin Yap, Yan Shan Loo, Hui Xuan Lim, Shuangyue Zhang, Huitao Liu, Chen Seng Ng","doi":"10.1002/agt2.70280","DOIUrl":"https://doi.org/10.1002/agt2.70280","url":null,"abstract":"<p>Protein aggregation drives proteinopathies ranging from ALS to systemic amyloidosis, yet the multiscale determinants bridging sequence, structure, and kinetics remain elusive. We present SKALE, an interpretable machine learning framework that integrates sequence motifs, AlphaFold-derived structural descriptors, and experimental kinetics to decode aggregation mechanisms. SKALE identifies latent hotspots that evade conventional tools and matches high-performing neural baselines while preserving computational efficiency. In ALS-linked SOD1 G86R, the model isolates a risk region at residues 72–91 where preserved β-sheet geometry coincides with weakened hydrogen bonding to drive nucleation. Similarly, analysis of TDP-43 S332N reveals that a locally unwound helix increases surface exposure, a prediction validated by showing that targeted deletion of model-identified regions significantly reduces cellular aggregation. The framework generalizes to Tau P301L and PRNP variants where it uncovers distal aggregation-prone regions to discriminate pathogenic drivers from neutral mutations. Interpretability analysis further disentangles global from mutation-local mechanisms to reveal that β-sheet propensity acts as a shared determinant while hydrogen bond dynamics define specific routes to nucleation. These findings establish SKALE as a scalable, disease-agnostic engine that combines high-fidelity prediction with biophysical resolution to decode the molecular logic of misfolding and guide therapeutic design.</p>","PeriodicalId":72127,"journal":{"name":"Aggregate (Hoboken, N.J.)","volume":"7 2","pages":""},"PeriodicalIF":13.7,"publicationDate":"2026-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/agt2.70280","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146140154","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}