The characteristics of high temperature polymer electrolyte membranes for fuel cell based on 2-pyridene based polybenzimidazole blended with poly(vinyl-phosphonic acid)
Yashesh J Rathwa, Sanjay K Parmar, Navin P Chikhaliya
{"title":"The characteristics of high temperature polymer electrolyte membranes for fuel cell based on 2-pyridene based polybenzimidazole blended with poly(vinyl-phosphonic acid)","authors":"Yashesh J Rathwa, Sanjay K Parmar, Navin P Chikhaliya","doi":"10.1177/09540083241253165","DOIUrl":null,"url":null,"abstract":"The present study has focused on exploring new 2-pyridine-bridge-based polybenzimidazole (2-Py-PBIs) based materials for various energy-related uses in proton exchange membrane fuel cells (PEMFC). An electrochemical device, which transforms chemical energy into electrical energy, is known as fuel cell. Using solution polymerization with polyphosphoric acid as a solvent, a series of 2-Py-PBIs were synthesised from the 4,4'-([2,4′-bipyridine]-2′,6′-diyl)bis (benzene-1,2-diamine). 2-Pyridine bridge Polybenzimidazoles are cross-linked with poly (vinylphosphonic acid), which helps us to improve membrane properties like mechanical properties and proton conductivities. FT-IR was used to characterize chemical structure, Ubbelohde viscometer was employed to determine the inherent viscosity. Additionally investigated were the oxidative stability, swelling ratio, ion exchange capability, and water uptake for 2-Py-PBIs. Thermogravimetric analysis is used to evaluate thermal stability. The obtained 2-Py-PBIs membranes were thermally stable and mechanically strong when compared with conventional polybenzimidazole-based membranes. The 2-Py-PBIs:PVPA membranes showed proton conductivity between 0.10 µS/m to 4.65 µS/m.","PeriodicalId":12932,"journal":{"name":"High Performance Polymers","volume":"125 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"High Performance Polymers","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1177/09540083241253165","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
The present study has focused on exploring new 2-pyridine-bridge-based polybenzimidazole (2-Py-PBIs) based materials for various energy-related uses in proton exchange membrane fuel cells (PEMFC). An electrochemical device, which transforms chemical energy into electrical energy, is known as fuel cell. Using solution polymerization with polyphosphoric acid as a solvent, a series of 2-Py-PBIs were synthesised from the 4,4'-([2,4′-bipyridine]-2′,6′-diyl)bis (benzene-1,2-diamine). 2-Pyridine bridge Polybenzimidazoles are cross-linked with poly (vinylphosphonic acid), which helps us to improve membrane properties like mechanical properties and proton conductivities. FT-IR was used to characterize chemical structure, Ubbelohde viscometer was employed to determine the inherent viscosity. Additionally investigated were the oxidative stability, swelling ratio, ion exchange capability, and water uptake for 2-Py-PBIs. Thermogravimetric analysis is used to evaluate thermal stability. The obtained 2-Py-PBIs membranes were thermally stable and mechanically strong when compared with conventional polybenzimidazole-based membranes. The 2-Py-PBIs:PVPA membranes showed proton conductivity between 0.10 µS/m to 4.65 µS/m.
期刊介绍:
Health Services Management Research (HSMR) is an authoritative international peer-reviewed journal which publishes theoretically and empirically rigorous research on questions of enduring interest to health-care organizations and systems throughout the world. Examining the real issues confronting health services management, it provides an independent view and cutting edge evidence-based research to guide policy-making and management decision-making. HSMR aims to be a forum serving an international community of academics and researchers on the one hand and healthcare managers, executives, policymakers and clinicians and all health professionals on the other. HSMR wants to make a substantial contribution to both research and managerial practice, with particular emphasis placed on publishing studies which offer actionable findings and on promoting knowledge mobilisation toward theoretical advances. All papers are expected to be of interest and relevance to an international audience. HSMR aims at enhance communication between academics and practitioners concerned with developing, implementing, and analysing health management issues, reforms and innovations primarily in European health systems and in all countries with developed health systems. Papers can report research undertaken in a single country, but they need to locate and explain their findings in an international context, and in international literature.