Autonomous navigation and steering control based on wireless non-wheeled snake robot

IF 1.9 4区 计算机科学 Q3 ROBOTICS Robotica Pub Date : 2024-05-08 DOI:10.1017/s0263574724000638
Liming Bao, Yongjun Sun, Zongwu Xie
{"title":"Autonomous navigation and steering control based on wireless non-wheeled snake robot","authors":"Liming Bao, Yongjun Sun, Zongwu Xie","doi":"10.1017/s0263574724000638","DOIUrl":null,"url":null,"abstract":"This paper mainly studies an autonomous path-planning and real-time path-tracking optimization method for snake robot. Snake robots can perform search and rescue, exploration, and other tasks in a variety of complex environments. Robots with visual sensors such as LiDAR can avoid obstacles in the environment through autonomous navigation to reach the target point. However, in an unstructured environment, the navigation of snake robot is easily affected by the external environment, causing the robot to deviate from the planned path. In order to solve the problem that snake robots are easily affected by environmental factors in unstructured environments, resulting in poor path-following ability, this paper uses the Los algorithm combined with steering control to plan the robot in real time and control the robot’s steering parameters in real time, ensuring that the robot can stably follow the planned path.","PeriodicalId":49593,"journal":{"name":"Robotica","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Robotica","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1017/s0263574724000638","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper mainly studies an autonomous path-planning and real-time path-tracking optimization method for snake robot. Snake robots can perform search and rescue, exploration, and other tasks in a variety of complex environments. Robots with visual sensors such as LiDAR can avoid obstacles in the environment through autonomous navigation to reach the target point. However, in an unstructured environment, the navigation of snake robot is easily affected by the external environment, causing the robot to deviate from the planned path. In order to solve the problem that snake robots are easily affected by environmental factors in unstructured environments, resulting in poor path-following ability, this paper uses the Los algorithm combined with steering control to plan the robot in real time and control the robot’s steering parameters in real time, ensuring that the robot can stably follow the planned path.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于无线非轮式蛇形机器人的自主导航和转向控制
本文主要研究蛇形机器人的自主路径规划和实时路径跟踪优化方法。蛇形机器人可以在各种复杂环境中执行搜救、勘探等任务。带有激光雷达等视觉传感器的机器人可以通过自主导航避开环境中的障碍物,从而到达目标点。然而,在非结构化环境中,蛇形机器人的导航很容易受到外部环境的影响,导致机器人偏离规划路径。为了解决蛇形机器人在非结构化环境中易受环境因素影响,导致路径跟随能力差的问题,本文采用洛斯算法结合转向控制,对机器人进行实时规划,并实时控制机器人的转向参数,确保机器人能够稳定地按照规划的路径行进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Robotica
Robotica 工程技术-机器人学
CiteScore
4.50
自引率
22.20%
发文量
181
审稿时长
9.9 months
期刊介绍: Robotica is a forum for the multidisciplinary subject of robotics and encourages developments, applications and research in this important field of automation and robotics with regard to industry, health, education and economic and social aspects of relevance. Coverage includes activities in hostile environments, applications in the service and manufacturing industries, biological robotics, dynamics and kinematics involved in robot design and uses, on-line robots, robot task planning, rehabilitation robotics, sensory perception, software in the widest sense, particularly in respect of programming languages and links with CAD/CAM systems, telerobotics and various other areas. In addition, interest is focused on various Artificial Intelligence topics of theoretical and practical interest.
期刊最新文献
Combining spatial clustering and tour planning for efficient full area exploration Design of a robotic gripper for casting sorting robots with rigid–flexible coupling structures DDPG-based path planning for cable-driven manipulators in multi-obstacle environments An online payload identification method based on parameter difference for industrial robots Adaptive integral terminal sliding mode control of unmanned bicycle via ELM and barrier function
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1