Hybrid Surfaces with Capillary Wick and Minichannels for Enhancement of Phase-Change Immersion Cooling of Power Electronics

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2024-05-09 DOI:10.1007/s12217-024-10117-9
Hongqiang Chen, Wanbo Liu, Yonghai Zhang, Jinjia Wei, Wangfang Du, Zhiqiang Zhu, Bin Li, Shuai Wang
{"title":"Hybrid Surfaces with Capillary Wick and Minichannels for Enhancement of Phase-Change Immersion Cooling of Power Electronics","authors":"Hongqiang Chen,&nbsp;Wanbo Liu,&nbsp;Yonghai Zhang,&nbsp;Jinjia Wei,&nbsp;Wangfang Du,&nbsp;Zhiqiang Zhu,&nbsp;Bin Li,&nbsp;Shuai Wang","doi":"10.1007/s12217-024-10117-9","DOIUrl":null,"url":null,"abstract":"<div><p>The pool boiling heat transfer (phase-change immersion cooling) phenomenon holds significant importance in the energy consumption management of large-power electronics. However, the optimization of surface structure for achieving stable and efficient heat transfer during boiling process remains a significant challenge. Herein, we propose a simplified and direct hybrid surface strategy that combines crossed mini channels and a capillary wick to address the cooling issues faced by high-performance power devices. The copper capillary wick is combined with the crossed mini channel to form a hybrid surface by a simple integrated sintering method. This study investigates the combined effects of different parameters of the capillary wick (average diameter size and powder addition) and minichannels (depth and width) on enhancing the nucleate boiling performance on these hybrid surfaces. The working fluid used in this investigation is HFE-7100. At <i>ΔT</i><sub>sub</sub> = 30 K, the CHF achieved by the hybrid surfaces combining capillary wicks and minichannels can reach 131 W/cm<sup>2</sup>, while the highest HTC is measured at 2.32 W/(cm<sup>2</sup>·K), both CHF and HTC achieve multiplicative enhancement compared to smooth surfaces. Furthermore, we have developed a CHF prediction model for the hybrid surfaces, which exhibits a prediction error of less than 15%.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s12217-024-10117-9","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The pool boiling heat transfer (phase-change immersion cooling) phenomenon holds significant importance in the energy consumption management of large-power electronics. However, the optimization of surface structure for achieving stable and efficient heat transfer during boiling process remains a significant challenge. Herein, we propose a simplified and direct hybrid surface strategy that combines crossed mini channels and a capillary wick to address the cooling issues faced by high-performance power devices. The copper capillary wick is combined with the crossed mini channel to form a hybrid surface by a simple integrated sintering method. This study investigates the combined effects of different parameters of the capillary wick (average diameter size and powder addition) and minichannels (depth and width) on enhancing the nucleate boiling performance on these hybrid surfaces. The working fluid used in this investigation is HFE-7100. At ΔTsub = 30 K, the CHF achieved by the hybrid surfaces combining capillary wicks and minichannels can reach 131 W/cm2, while the highest HTC is measured at 2.32 W/(cm2·K), both CHF and HTC achieve multiplicative enhancement compared to smooth surfaces. Furthermore, we have developed a CHF prediction model for the hybrid surfaces, which exhibits a prediction error of less than 15%.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
带有毛细管吸芯和微型通道的混合表面,用于增强电力电子器件的相变浸入冷却效果
池沸腾传热(相变浸入冷却)现象在大功率电子设备的能耗管理中具有重要意义。然而,如何优化表面结构以实现沸腾过程中稳定高效的热传递仍然是一个重大挑战。在此,我们提出了一种结合交叉微型通道和毛细管芯的简化而直接的混合表面策略,以解决高性能功率器件所面临的冷却问题。通过一种简单的集成烧结方法,铜毛细管芯与交叉微型通道结合形成了混合表面。本研究探讨了毛细管芯(平均直径尺寸和粉末添加量)和微型通道(深度和宽度)的不同参数对提高这些混合表面的成核沸腾性能的综合影响。本次研究使用的工作流体是 HFE-7100。在 ΔTsub = 30 K 的条件下,毛细管芯和微型通道相结合的混合表面实现的 CHF 达到 131 W/cm2,测得的最高 HTC 为 2.32 W/(cm2-K),与光滑表面相比,CHF 和 HTC 都实现了成倍的增强。此外,我们还为混合表面开发了一个 CHF 预测模型,其预测误差小于 15%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Mentorship in academic musculoskeletal radiology: perspectives from a junior faculty member. Underlying synovial sarcoma undiagnosed for more than 20 years in a patient with regional pain: a case report. Sacrococcygeal chordoma with spontaneous regression due to a large hemorrhagic component. Associations of cumulative voriconazole dose, treatment duration, and alkaline phosphatase with voriconazole-induced periostitis. Can the presence of SLAP-5 lesions be predicted by using the critical shoulder angle in traumatic anterior shoulder instability?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1