{"title":"Convergence of the block Lanczos method for the trust‐region subproblem in the hard case","authors":"Bo Feng, Gang Wu","doi":"10.1002/nla.2561","DOIUrl":null,"url":null,"abstract":"SummaryThe trust‐region subproblem (TRS) plays a vital role in numerical optimization, numerical linear algebra, and many other applications. It is known that the TRS may have multiple optimal solutions in the hard case. In [Carmon and Duchi, SIAM Rev., 62 (2020), pp. 395–436], a block Lanczos method was proposed to solve the TRS in the <jats:italic>hard case</jats:italic>, and the convergence of the optimal objective value was established. However, the convergence of the KKT error as well as that of the approximate solution are still unknown for this method. In this paper, we give a more detailed convergence analysis on the block Lanczos method for the TRS in the <jats:italic>hard case</jats:italic>. First, we improve the convergence speed of the approximate objective value. Second, we derive the speed of the KKT error tends to zero. Third, we establish the convergence of the approximation solution, and show theoretically that the <jats:italic>projected</jats:italic> TRS obtained from the block Lanczos method will be close to the <jats:italic>hard case</jats:italic> more and more as the block Lanczos process proceeds. Numerical experiments illustrate the effectiveness of our theoretical results.","PeriodicalId":49731,"journal":{"name":"Numerical Linear Algebra with Applications","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Numerical Linear Algebra with Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/nla.2561","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
SummaryThe trust‐region subproblem (TRS) plays a vital role in numerical optimization, numerical linear algebra, and many other applications. It is known that the TRS may have multiple optimal solutions in the hard case. In [Carmon and Duchi, SIAM Rev., 62 (2020), pp. 395–436], a block Lanczos method was proposed to solve the TRS in the hard case, and the convergence of the optimal objective value was established. However, the convergence of the KKT error as well as that of the approximate solution are still unknown for this method. In this paper, we give a more detailed convergence analysis on the block Lanczos method for the TRS in the hard case. First, we improve the convergence speed of the approximate objective value. Second, we derive the speed of the KKT error tends to zero. Third, we establish the convergence of the approximation solution, and show theoretically that the projected TRS obtained from the block Lanczos method will be close to the hard case more and more as the block Lanczos process proceeds. Numerical experiments illustrate the effectiveness of our theoretical results.
期刊介绍:
Manuscripts submitted to Numerical Linear Algebra with Applications should include large-scale broad-interest applications in which challenging computational results are integral to the approach investigated and analysed. Manuscripts that, in the Editor’s view, do not satisfy these conditions will not be accepted for review.
Numerical Linear Algebra with Applications receives submissions in areas that address developing, analysing and applying linear algebra algorithms for solving problems arising in multilinear (tensor) algebra, in statistics, such as Markov Chains, as well as in deterministic and stochastic modelling of large-scale networks, algorithm development, performance analysis or related computational aspects.
Topics covered include: Standard and Generalized Conjugate Gradients, Multigrid and Other Iterative Methods; Preconditioning Methods; Direct Solution Methods; Numerical Methods for Eigenproblems; Newton-like Methods for Nonlinear Equations; Parallel and Vectorizable Algorithms in Numerical Linear Algebra; Application of Methods of Numerical Linear Algebra in Science, Engineering and Economics.