2.5 μm-Thick Ultrastrong Asymmetric Separator for Stable Lithium Metal Batteries

IF 13 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Energy & Environmental Materials Pub Date : 2024-05-11 DOI:10.1002/eem2.12746
Donghao Xie, Zekun Wang, Xin Ma, Yuchen Feng, Xiaomin Tang, Qiao Gu, Yonghong Deng, Ping Gao
{"title":"2.5 μm-Thick Ultrastrong Asymmetric Separator for Stable Lithium Metal Batteries","authors":"Donghao Xie,&nbsp;Zekun Wang,&nbsp;Xin Ma,&nbsp;Yuchen Feng,&nbsp;Xiaomin Tang,&nbsp;Qiao Gu,&nbsp;Yonghong Deng,&nbsp;Ping Gao","doi":"10.1002/eem2.12746","DOIUrl":null,"url":null,"abstract":"<p>Lithium metal batteries (LMBs) are considered the ideal choice for high volumetric energy density lithium-ion batteries, but uncontrolled lithium deposition poses a significant challenge to the stability of such devices. In this paper, we introduce a 2.5 μm-thick asymmetric and ultrastrong separator, which can induce tissue-like lithium deposits. The asymmetric separator, denoted by utPE@Cu<sub>2</sub>O, was prepared by selective synthesis of Cu<sub>2</sub>O nanoparticles on one of the outer surfaces of a nanofibrous (diameter ~10 nm) ultrastrong ultrahigh molecular weight polyethylene (UHMWPE) membrane. Microscopic analysis shows that the lithium deposits have tissue-like morphology, resulting in the symmetric lithium cells assembled using utPE@Cu<sub>2</sub>O with symmetric Cu<sub>2</sub>O coating exhibiting stable performance for over 2000 h of cycling. This work demonstrates the feasibility of a facile approach ultrathin separators for the deployment of lithium metal batteries, providing a pathway towards enhanced battery performance and safety.</p>","PeriodicalId":11554,"journal":{"name":"Energy & Environmental Materials","volume":null,"pages":null},"PeriodicalIF":13.0000,"publicationDate":"2024-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eem2.12746","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy & Environmental Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/eem2.12746","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Lithium metal batteries (LMBs) are considered the ideal choice for high volumetric energy density lithium-ion batteries, but uncontrolled lithium deposition poses a significant challenge to the stability of such devices. In this paper, we introduce a 2.5 μm-thick asymmetric and ultrastrong separator, which can induce tissue-like lithium deposits. The asymmetric separator, denoted by utPE@Cu2O, was prepared by selective synthesis of Cu2O nanoparticles on one of the outer surfaces of a nanofibrous (diameter ~10 nm) ultrastrong ultrahigh molecular weight polyethylene (UHMWPE) membrane. Microscopic analysis shows that the lithium deposits have tissue-like morphology, resulting in the symmetric lithium cells assembled using utPE@Cu2O with symmetric Cu2O coating exhibiting stable performance for over 2000 h of cycling. This work demonstrates the feasibility of a facile approach ultrathin separators for the deployment of lithium metal batteries, providing a pathway towards enhanced battery performance and safety.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于稳定金属锂电池的 2.5 μm 厚超强不对称隔膜
锂金属电池(LMB)被认为是高体积能量密度锂离子电池的理想选择,但不受控制的锂沉积对此类设备的稳定性构成了巨大挑战。在本文中,我们介绍了一种 2.5 μm 厚的不对称超强隔膜,它可以诱导组织状锂沉积。这种不对称隔膜(用 utPE@Cu2O 表示)是通过在纳米纤维状(直径约 10 纳米)超强超高分子量聚乙烯(UHMWPE)膜的一个外表面选择性合成 Cu2O 纳米颗粒制备而成的。显微分析表明,锂沉积物具有类似组织的形态,因此,使用带有对称 Cu2O 涂层的 utPE@Cu2O 组装的对称锂电池在超过 2000 小时的循环中表现出稳定的性能。这项工作证明了将超薄隔膜用于锂金属电池的简便方法的可行性,为提高电池性能和安全性提供了一条途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Energy & Environmental Materials
Energy & Environmental Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
17.60
自引率
6.00%
发文量
66
期刊介绍: Energy & Environmental Materials (EEM) is an international journal published by Zhengzhou University in collaboration with John Wiley & Sons, Inc. The journal aims to publish high quality research related to materials for energy harvesting, conversion, storage, and transport, as well as for creating a cleaner environment. EEM welcomes research work of significant general interest that has a high impact on society-relevant technological advances. The scope of the journal is intentionally broad, recognizing the complexity of issues and challenges related to energy and environmental materials. Therefore, interdisciplinary work across basic science and engineering disciplines is particularly encouraged. The areas covered by the journal include, but are not limited to, materials and composites for photovoltaics and photoelectrochemistry, bioprocessing, batteries, fuel cells, supercapacitors, clean air, and devices with multifunctionality. The readership of the journal includes chemical, physical, biological, materials, and environmental scientists and engineers from academia, industry, and policy-making.
期刊最新文献
Issue Information Unveiling the Role of Electrocatalysts Activation for Iron-Doped Ni Oxyhydroxide in Enhancing the Catalytic Performance of Oxygen Evolution Reaction Unraveling the Morphological and Energetic Properties of 2PACz Self-Assembled Monolayers Fabricated With Upscaling Deposition Methods Covalently Anchoring and In Situ Electrochemical Activation of Conductive Selenophene-Organic Matrix-Driven High-Efficiency Potassium Organic Batteries A Practical Zinc Metal Anode Coating Strategy Utilizing Bulk h-BN and Improved Hydrogen Redox Kinetics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1