Continuous Lithium-Ion Extraction From Seawater and Mine Water With a Fuel Cell System and Ceramic Membranes

IF 13 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Energy & Environmental Materials Pub Date : 2024-05-12 DOI:10.1002/eem2.12742
Cansu Kök, Lei Wang, Jean Gustavo A. Ruthes, Antje Quade, Matthew E. Suss, Volker Presser
{"title":"Continuous Lithium-Ion Extraction From Seawater and Mine Water With a Fuel Cell System and Ceramic Membranes","authors":"Cansu Kök, Lei Wang, Jean Gustavo A. Ruthes, Antje Quade, Matthew E. Suss, Volker Presser","doi":"10.1002/eem2.12742","DOIUrl":null,"url":null,"abstract":"The demand for electronic devices that utilize lithium is steadily increasing in this rapidly advancing technological world. Obtaining high-purity lithium in an environmentally friendly way is challenging by using commercialized methods. Herein, we propose the first fuel cell system for continuous lithium-ion extraction using a lithium superionic conductor membrane and advanced electrode. The fuel cell system for extracting lithium-ion has demonstrated a twofold increase in the selectivity of Li<sup>+</sup>/Na<sup>+</sup> while producing electricity. Our data show that the fuel cell with a titania-coated electrode achieves 95% lithium-ion purity while generating 10.23 Wh of energy per gram of lithium. Our investigation revealed that using atomic layer deposition improved the electrode's uniformity, stability, and electrocatalytic activity. After 2000 cycles determined by cyclic voltammetry, the electrode preserved its stability.","PeriodicalId":11554,"journal":{"name":"Energy & Environmental Materials","volume":null,"pages":null},"PeriodicalIF":13.0000,"publicationDate":"2024-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy & Environmental Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/eem2.12742","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The demand for electronic devices that utilize lithium is steadily increasing in this rapidly advancing technological world. Obtaining high-purity lithium in an environmentally friendly way is challenging by using commercialized methods. Herein, we propose the first fuel cell system for continuous lithium-ion extraction using a lithium superionic conductor membrane and advanced electrode. The fuel cell system for extracting lithium-ion has demonstrated a twofold increase in the selectivity of Li+/Na+ while producing electricity. Our data show that the fuel cell with a titania-coated electrode achieves 95% lithium-ion purity while generating 10.23 Wh of energy per gram of lithium. Our investigation revealed that using atomic layer deposition improved the electrode's uniformity, stability, and electrocatalytic activity. After 2000 cycles determined by cyclic voltammetry, the electrode preserved its stability.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用燃料电池系统和陶瓷膜从海水和矿井水中连续提取锂离子
在科技飞速发展的今天,人们对使用锂的电子设备的需求稳步增长。使用商业化方法以环保方式获得高纯度锂具有挑战性。在此,我们提出了首个使用锂超离子导体膜和先进电极连续提取锂离子的燃料电池系统。该萃取锂离子的燃料电池系统在发电的同时,将 Li+/Na+ 的选择性提高了两倍。我们的数据显示,采用二氧化钛涂层电极的燃料电池可实现 95% 的锂离子纯度,同时每克锂可产生 10.23 Wh 的能量。我们的研究表明,原子层沉积技术提高了电极的均匀性、稳定性和电催化活性。根据循环伏安法测定,经过 2000 次循环后,电极仍然保持稳定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Energy & Environmental Materials
Energy & Environmental Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
17.60
自引率
6.00%
发文量
66
期刊介绍: Energy & Environmental Materials (EEM) is an international journal published by Zhengzhou University in collaboration with John Wiley & Sons, Inc. The journal aims to publish high quality research related to materials for energy harvesting, conversion, storage, and transport, as well as for creating a cleaner environment. EEM welcomes research work of significant general interest that has a high impact on society-relevant technological advances. The scope of the journal is intentionally broad, recognizing the complexity of issues and challenges related to energy and environmental materials. Therefore, interdisciplinary work across basic science and engineering disciplines is particularly encouraged. The areas covered by the journal include, but are not limited to, materials and composites for photovoltaics and photoelectrochemistry, bioprocessing, batteries, fuel cells, supercapacitors, clean air, and devices with multifunctionality. The readership of the journal includes chemical, physical, biological, materials, and environmental scientists and engineers from academia, industry, and policy-making.
期刊最新文献
Unveiling the Role of Electrocatalysts Activation for Iron-Doped Ni Oxyhydroxide in Enhancing the Catalytic Performance of Oxygen Evolution Reaction Unraveling the Morphological and Energetic Properties of 2PACz Self-Assembled Monolayers Fabricated With Upscaling Deposition Methods Covalently Anchoring and In Situ Electrochemical Activation of Conductive Selenophene-Organic Matrix-Driven High-Efficiency Potassium Organic Batteries A Practical Zinc Metal Anode Coating Strategy Utilizing Bulk h-BN and Improved Hydrogen Redox Kinetics Designing Spin-Crossover Systems to Enhance Thermopower and Thermoelectric Figure-of-Merit in Paramagnetic Materials
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1