Recent Advances in Machine Learning Assisted Hydrogel Flexible Sensing

Song Zhou, Dengke Song, Lisha Pu, Wenlong Xu
{"title":"Recent Advances in Machine Learning Assisted Hydrogel Flexible Sensing","authors":"Song Zhou, Dengke Song, Lisha Pu, Wenlong Xu","doi":"10.1002/zaac.202400051","DOIUrl":null,"url":null,"abstract":"Hydrogel flexible sensors are widely used in wearable devices, health care, intelligent robots and other fields due to their excellent flexibility, biocompatibility and high sensitivity. With the development of single sensor to multi‐channel and multi‐mode sensor network, the sensor data also presents the characteristics of multi‐dimension, complex and massive. Traditional data analysis methods can no longer meet the data analysis requirements of hydrogel flexible sensor networks. The introduction of machine learning (ML) technology optimizes the process of data analysis. With the continuous development of multi‐layer neural network technology and the improvement of computer performance, deep learning (DL) algorithm is increasingly used to achieve higher efficiency and accuracy, provides a powerful tool for data analysis of hydrogel flexible sensor, and accelerates the intelligent process of hydrogel flexible sensor equipment. This paper introduces the classification of hydrogel flexible sensors and the working mechanism and common algorithms of ML, and summarizes the application of ML technology to assist hydrogel flexible sensors in data analysis in the fields of health care and information recognition. This review will provide inspiration and reference for integrating ML technology into the field of hydrogel flexible sensors.","PeriodicalId":23934,"journal":{"name":"Zeitschrift für anorganische und allgemeine Chemie","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zeitschrift für anorganische und allgemeine Chemie","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/zaac.202400051","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Hydrogel flexible sensors are widely used in wearable devices, health care, intelligent robots and other fields due to their excellent flexibility, biocompatibility and high sensitivity. With the development of single sensor to multi‐channel and multi‐mode sensor network, the sensor data also presents the characteristics of multi‐dimension, complex and massive. Traditional data analysis methods can no longer meet the data analysis requirements of hydrogel flexible sensor networks. The introduction of machine learning (ML) technology optimizes the process of data analysis. With the continuous development of multi‐layer neural network technology and the improvement of computer performance, deep learning (DL) algorithm is increasingly used to achieve higher efficiency and accuracy, provides a powerful tool for data analysis of hydrogel flexible sensor, and accelerates the intelligent process of hydrogel flexible sensor equipment. This paper introduces the classification of hydrogel flexible sensors and the working mechanism and common algorithms of ML, and summarizes the application of ML technology to assist hydrogel flexible sensors in data analysis in the fields of health care and information recognition. This review will provide inspiration and reference for integrating ML technology into the field of hydrogel flexible sensors.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
机器学习辅助水凝胶柔性传感技术的最新进展
水凝胶柔性传感器因其优异的柔韧性、生物相容性和高灵敏度,被广泛应用于可穿戴设备、医疗保健、智能机器人等领域。随着单传感器向多通道、多模式传感器网络的发展,传感器数据也呈现出多维度、复杂、海量的特点。传统的数据分析方法已无法满足水凝胶柔性传感器网络的数据分析要求。机器学习(ML)技术的引入优化了数据分析过程。随着多层神经网络技术的不断发展和计算机性能的提升,深度学习(DL)算法得到越来越多的应用,实现了更高的效率和精度,为水凝胶柔性传感器的数据分析提供了有力工具,加速了水凝胶柔性传感器装备的智能化进程。本文介绍了水凝胶柔性传感器的分类以及 ML 的工作机理和常用算法,总结了 ML 技术在医疗保健和信息识别领域辅助水凝胶柔性传感器进行数据分析的应用。本综述将为把 ML 技术融入水凝胶柔性传感器领域提供启发和参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Oxygen redox activity in battery cathodes and the role of underbonded oxygen High‐Pressure Synthesis and Crystal Structure of the Inoborate Ni[B2O2(OH)4] Synthesis and Single Crystal X‐ray Characterization of [Sn5Bi3]3− Chiral Homodinuclear Dysprosium Macrocyclic Complexes with Single‐molecule Magnetic Behaviours From tin(II) to tin(IV): Following solid‐liquid reactions by microscopy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1