{"title":"Tunable superconducting resonators via on-chip control of local magnetic field","authors":"Chen-Guang Wang, Wen-Cheng Yue, Xuecou Tu, Tianyuan Chi, Tingting Guo, Yang-Yang Lyu, Sining Dong, Chunhai Cao, Labao Zhang, Xiaoqing Jia, Guozhu Sun, Lin Kang, Jian Chen, Yong-Lei Wang, Huabing Wang, Peiheng Wu","doi":"10.1088/1674-1056/ad2f21","DOIUrl":null,"url":null,"abstract":"Superconducting microwave resonators play a pivotal role in superconducting quantum circuits. The ability to fine-tune their resonant frequencies provides enhanced control and flexibility. Here, we introduce a frequency-tunable superconducting coplanar waveguide resonator. By applying electrical currents through specifically designed ground wires, we achieve the generation and control of a localized magnetic field on the central line of the resonator, enabling continuous tuning of its resonant frequency. We demonstrate a frequency tuning range of 54.85 MHz in a 6.21-GHz resonator. This integrated and tunable resonator holds great potential as a dynamically tunable filter and as a key component of communication buses and memory elements in superconducting quantum computing.","PeriodicalId":10253,"journal":{"name":"Chinese Physics B","volume":"1 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Physics B","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1674-1056/ad2f21","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Superconducting microwave resonators play a pivotal role in superconducting quantum circuits. The ability to fine-tune their resonant frequencies provides enhanced control and flexibility. Here, we introduce a frequency-tunable superconducting coplanar waveguide resonator. By applying electrical currents through specifically designed ground wires, we achieve the generation and control of a localized magnetic field on the central line of the resonator, enabling continuous tuning of its resonant frequency. We demonstrate a frequency tuning range of 54.85 MHz in a 6.21-GHz resonator. This integrated and tunable resonator holds great potential as a dynamically tunable filter and as a key component of communication buses and memory elements in superconducting quantum computing.
期刊介绍:
Chinese Physics B is an international journal covering the latest developments and achievements in all branches of physics worldwide (with the exception of nuclear physics and physics of elementary particles and fields, which is covered by Chinese Physics C). It publishes original research papers and rapid communications reflecting creative and innovative achievements across the field of physics, as well as review articles covering important accomplishments in the frontiers of physics.
Subject coverage includes:
Condensed matter physics and the physics of materials
Atomic, molecular and optical physics
Statistical, nonlinear and soft matter physics
Plasma physics
Interdisciplinary physics.