Maximizing power generation in single-chamber microbial fuel cells: the role of LiTa0.5Nb0.5O3/g-C3N4 photocatalyst

IF 3.6 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Materials for Renewable and Sustainable Energy Pub Date : 2024-05-09 DOI:10.1007/s40243-024-00259-6
Nour-eddine Lazar, Driss Mazkad, Hamza Kharti, Fatma Yalcinkaya, Andrea Pietrelli, Vincenzo Ferrara, Noureddine Touach, Abdellah Benzaouak, Mohammed El Mahi, El Mostapha Lotfi
{"title":"Maximizing power generation in single-chamber microbial fuel cells: the role of LiTa0.5Nb0.5O3/g-C3N4 photocatalyst","authors":"Nour-eddine Lazar, Driss Mazkad, Hamza Kharti, Fatma Yalcinkaya, Andrea Pietrelli, Vincenzo Ferrara, Noureddine Touach, Abdellah Benzaouak, Mohammed El Mahi, El Mostapha Lotfi","doi":"10.1007/s40243-024-00259-6","DOIUrl":null,"url":null,"abstract":"<p>Microbial fuel cells (MFCs) have attracted a great deal of attention as a promising technology for recovering electricity from organic substances by harnessing the metabolic activities of microorganisms. The objective of this study is to assess the efficacy of a LiTa<sub>0.5</sub>Nb<sub>0.5</sub>O<sub>3</sub>/g-C<sub>3</sub>N<sub>4</sub> (LTN/g-C<sub>3</sub>N<sub>4</sub>) heterojunction as a photocathode catalyst within a single-chamber microbial fuel cell operating under both light irradiation and dark conditions. X-Ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and Energy dispersive X-Ray spectroscopy (EDS) were used to conduct a comprehensive analysis of the composite catalyst, revealing its exceptional purity and unique properties. After 120 h of exposure to visible light, the maximal power density of the MFC containing LTN/g-C3N4-modified carbon cloth was determined to be 667.7 mW/m<sup>3</sup>. The power density achieved with the presence of light was approximately three times greater than the power density obtained without light in the MFC (235.64 mW/m<sup>3</sup>). In addition, the study determined that the removal efficiencies of chemical oxygen demand (COD) were 88.4% and 66.5% when exposed to light and in the absence of light, respectively. These findings highlight the potential of the non-precious LTN/g-C<sub>3</sub>N<sub>4</sub> photocatalyst as a viable alternative for effective wastewater treatment and power generation in microbial fuel cells with a single chamber configuration.</p>","PeriodicalId":692,"journal":{"name":"Materials for Renewable and Sustainable Energy","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials for Renewable and Sustainable Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s40243-024-00259-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Microbial fuel cells (MFCs) have attracted a great deal of attention as a promising technology for recovering electricity from organic substances by harnessing the metabolic activities of microorganisms. The objective of this study is to assess the efficacy of a LiTa0.5Nb0.5O3/g-C3N4 (LTN/g-C3N4) heterojunction as a photocathode catalyst within a single-chamber microbial fuel cell operating under both light irradiation and dark conditions. X-Ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and Energy dispersive X-Ray spectroscopy (EDS) were used to conduct a comprehensive analysis of the composite catalyst, revealing its exceptional purity and unique properties. After 120 h of exposure to visible light, the maximal power density of the MFC containing LTN/g-C3N4-modified carbon cloth was determined to be 667.7 mW/m3. The power density achieved with the presence of light was approximately three times greater than the power density obtained without light in the MFC (235.64 mW/m3). In addition, the study determined that the removal efficiencies of chemical oxygen demand (COD) were 88.4% and 66.5% when exposed to light and in the absence of light, respectively. These findings highlight the potential of the non-precious LTN/g-C3N4 photocatalyst as a viable alternative for effective wastewater treatment and power generation in microbial fuel cells with a single chamber configuration.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
最大限度提高单室微生物燃料电池的发电量:LiTa0.5Nb0.5O3/g-C3N4 光催化剂的作用
微生物燃料电池(MFC)作为一种利用微生物的新陈代谢活动从有机物中回收电能的前景广阔的技术,已经引起了广泛的关注。本研究的目的是评估在光照和黑暗条件下运行的单室微生物燃料电池中,将 LiTa0.5Nb0.5O3/g-C3N4 (LTN/g-C3N4)异质结作为光阴极催化剂的功效。研究人员利用 X 射线衍射 (XRD)、傅立叶变换红外光谱 (FTIR)、扫描电子显微镜 (SEM) 和能量色散 X 射线光谱 (EDS) 对复合催化剂进行了全面分析,揭示了其卓越的纯度和独特的性能。在可见光下暴露 120 小时后,含有 LTN/g-C3N4 改性碳布的 MFC 的最大功率密度被测定为 667.7 mW/m3。在有光的情况下获得的功率密度比 MFC 在无光的情况下获得的功率密度(235.64 mW/m3)高出约三倍。此外,研究还确定,在有光和无光的情况下,化学需氧量(COD)的去除率分别为 88.4% 和 66.5%。这些发现凸显了非贵金属 LTN/g-C3N4 光催化剂作为一种可行的替代品,在单室配置的微生物燃料电池中有效处理废水和发电的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Materials for Renewable and Sustainable Energy
Materials for Renewable and Sustainable Energy MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
7.90
自引率
2.20%
发文量
8
审稿时长
13 weeks
期刊介绍: Energy is the single most valuable resource for human activity and the basis for all human progress. Materials play a key role in enabling technologies that can offer promising solutions to achieve renewable and sustainable energy pathways for the future. Materials for Renewable and Sustainable Energy has been established to be the world''s foremost interdisciplinary forum for publication of research on all aspects of the study of materials for the deployment of renewable and sustainable energy technologies. The journal covers experimental and theoretical aspects of materials and prototype devices for sustainable energy conversion, storage, and saving, together with materials needed for renewable fuel production. It publishes reviews, original research articles, rapid communications, and perspectives. All manuscripts are peer-reviewed for scientific quality. Topics include: 1. MATERIALS for renewable energy storage and conversion: Batteries, Supercapacitors, Fuel cells, Hydrogen storage, and Photovoltaics and solar cells. 2. MATERIALS for renewable and sustainable fuel production: Hydrogen production and fuel generation from renewables (catalysis), Solar-driven reactions to hydrogen and fuels from renewables (photocatalysis), Biofuels, and Carbon dioxide sequestration and conversion. 3. MATERIALS for energy saving: Thermoelectrics, Novel illumination sources for efficient lighting, and Energy saving in buildings. 4. MATERIALS modeling and theoretical aspects. 5. Advanced characterization techniques of MATERIALS Materials for Renewable and Sustainable Energy is committed to upholding the integrity of the scientific record. As a member of the Committee on Publication Ethics (COPE) the journal will follow the COPE guidelines on how to deal with potential acts of misconduct. Authors should refrain from misrepresenting research results which could damage the trust in the journal and ultimately the entire scientific endeavor. Maintaining integrity of the research and its presentation can be achieved by following the rules of good scientific practice as detailed here: https://www.springer.com/us/editorial-policies
期刊最新文献
Novel Nafion nanocomposite membranes embedded with TiO2-decorated MWCNTs for high-temperature/low relative humidity fuel cell systems Triboelectric power generation performance of polyvinyl alcohol using ZnO–CuO–AgO trimetallic nanoparticles Mesoporous Pdx-Nix aerogels for electrocatalytic evaluation of urea-assisted electrolysis Characteristics of rice husk biochar briquettes with municipal solid waste cassava, sweet potato and matooke peelings as binders Numerical investigation of the effect of an air layer on the melting process of phase change materials
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1