{"title":"Rainbow Hamiltonicity in uniformly coloured perturbed digraphs","authors":"Kyriakos Katsamaktsis, Shoham Letzter, Amedeo Sgueglia","doi":"10.1017/s0963548324000130","DOIUrl":null,"url":null,"abstract":"We investigate the existence of a rainbow Hamilton cycle in a uniformly edge-coloured randomly perturbed digraph. We show that for every <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000130_inline1.png\"/> <jats:tex-math> $\\delta \\in (0,1)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> there exists <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000130_inline2.png\"/> <jats:tex-math> $C = C(\\delta ) \\gt 0$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> such that the following holds. Let <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000130_inline3.png\"/> <jats:tex-math> $D_0$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> be an <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000130_inline4.png\"/> <jats:tex-math> $n$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-vertex digraph with minimum semidegree at least <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000130_inline5.png\"/> <jats:tex-math> $\\delta n$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and suppose that each edge of the union of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000130_inline6.png\"/> <jats:tex-math> $D_0$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> with a copy of the random digraph <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000130_inline7.png\"/> <jats:tex-math> $\\mathbf{D}(n,C/n)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> on the same vertex set gets a colour in <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000130_inline8.png\"/> <jats:tex-math> $[n]$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> independently and uniformly at random. Then, with high probability, <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000130_inline9.png\"/> <jats:tex-math> $D_0 \\cup \\mathbf{D}(n,C/n)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> has a rainbow directed Hamilton cycle. This improves a result of Aigner-Horev and Hefetz ((2021) <jats:italic>SIAM J. Discrete Math.</jats:italic>35(3) 1569–1577), who proved the same in the undirected setting when the edges are coloured uniformly in a set of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000130_inline10.png\"/> <jats:tex-math> $(1 + \\varepsilon )n$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> colours.","PeriodicalId":10503,"journal":{"name":"Combinatorics, Probability and Computing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combinatorics, Probability and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/s0963548324000130","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We investigate the existence of a rainbow Hamilton cycle in a uniformly edge-coloured randomly perturbed digraph. We show that for every $\delta \in (0,1)$ there exists $C = C(\delta ) \gt 0$ such that the following holds. Let $D_0$ be an $n$ -vertex digraph with minimum semidegree at least $\delta n$ and suppose that each edge of the union of $D_0$ with a copy of the random digraph $\mathbf{D}(n,C/n)$ on the same vertex set gets a colour in $[n]$ independently and uniformly at random. Then, with high probability, $D_0 \cup \mathbf{D}(n,C/n)$ has a rainbow directed Hamilton cycle. This improves a result of Aigner-Horev and Hefetz ((2021) SIAM J. Discrete Math.35(3) 1569–1577), who proved the same in the undirected setting when the edges are coloured uniformly in a set of $(1 + \varepsilon )n$ colours.