Charles Lois I. Flores, Gaurav Gupta, Mohamed Mamlouk, Mary Donnabelle L. Balela
{"title":"Enhancing the physicochemical properties of nickel cobaltite catalyst for oxygen evolution reaction in anion exchange membrane water electrolyzers","authors":"Charles Lois I. Flores, Gaurav Gupta, Mohamed Mamlouk, Mary Donnabelle L. Balela","doi":"10.1007/s40243-024-00258-7","DOIUrl":null,"url":null,"abstract":"<div><p>Hierarchical hollow urchin-like nickel cobaltite (NiCo<sub>2</sub>O<sub>4</sub>) was synthesized using a two-step hydrothermal method. The effects of metal composition and surfactant addition on the morphology, structure, and electrochemical performance toward oxygen evolution reaction (OER) were investigated. The addition of cetyltrimethylammonium bromide (CTAB) reduced particle aggregation, resulting in a higher electrochemical active surface area and electrical conductivity. Lowering the Ni content from 1.0 to 0.25 did not alter the morphology and structure of the product to any extent. However, the crystallite size slightly increased. Among the spinels with different Ni and Co compositions, NiCo<sub>2</sub>O<sub>4</sub> exhibited a superior OER electrocatalytic activity, achieving a 380 mV overpotential at 10 mA/cm<sup>2</sup> current density. It also delivered a good performance in an anion exchange membrane water electrolyzer (AEMWE) using 1 M NaOH at 60 °C, reaching a current density of about 420 mA/cm<sup>2</sup> at a cell voltage of 1.95 V.</p></div>","PeriodicalId":692,"journal":{"name":"Materials for Renewable and Sustainable Energy","volume":"13 3","pages":"279 - 290"},"PeriodicalIF":3.6000,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40243-024-00258-7.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials for Renewable and Sustainable Energy","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s40243-024-00258-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Hierarchical hollow urchin-like nickel cobaltite (NiCo2O4) was synthesized using a two-step hydrothermal method. The effects of metal composition and surfactant addition on the morphology, structure, and electrochemical performance toward oxygen evolution reaction (OER) were investigated. The addition of cetyltrimethylammonium bromide (CTAB) reduced particle aggregation, resulting in a higher electrochemical active surface area and electrical conductivity. Lowering the Ni content from 1.0 to 0.25 did not alter the morphology and structure of the product to any extent. However, the crystallite size slightly increased. Among the spinels with different Ni and Co compositions, NiCo2O4 exhibited a superior OER electrocatalytic activity, achieving a 380 mV overpotential at 10 mA/cm2 current density. It also delivered a good performance in an anion exchange membrane water electrolyzer (AEMWE) using 1 M NaOH at 60 °C, reaching a current density of about 420 mA/cm2 at a cell voltage of 1.95 V.
期刊介绍:
Energy is the single most valuable resource for human activity and the basis for all human progress. Materials play a key role in enabling technologies that can offer promising solutions to achieve renewable and sustainable energy pathways for the future.
Materials for Renewable and Sustainable Energy has been established to be the world''s foremost interdisciplinary forum for publication of research on all aspects of the study of materials for the deployment of renewable and sustainable energy technologies. The journal covers experimental and theoretical aspects of materials and prototype devices for sustainable energy conversion, storage, and saving, together with materials needed for renewable fuel production. It publishes reviews, original research articles, rapid communications, and perspectives. All manuscripts are peer-reviewed for scientific quality.
Topics include:
1. MATERIALS for renewable energy storage and conversion: Batteries, Supercapacitors, Fuel cells, Hydrogen storage, and Photovoltaics and solar cells.
2. MATERIALS for renewable and sustainable fuel production: Hydrogen production and fuel generation from renewables (catalysis), Solar-driven reactions to hydrogen and fuels from renewables (photocatalysis), Biofuels, and Carbon dioxide sequestration and conversion.
3. MATERIALS for energy saving: Thermoelectrics, Novel illumination sources for efficient lighting, and Energy saving in buildings.
4. MATERIALS modeling and theoretical aspects.
5. Advanced characterization techniques of MATERIALS
Materials for Renewable and Sustainable Energy is committed to upholding the integrity of the scientific record. As a member of the Committee on Publication Ethics (COPE) the journal will follow the COPE guidelines on how to deal with potential acts of misconduct. Authors should refrain from misrepresenting research results which could damage the trust in the journal and ultimately the entire scientific endeavor. Maintaining integrity of the research and its presentation can be achieved by following the rules of good scientific practice as detailed here: https://www.springer.com/us/editorial-policies