Yinan Lu, Yunhui Du, Weiyi Zhang, Hongzhen Tan, Nan Zhang, Yi Luo, Peng Zhang
{"title":"Nano-Al2O3 Particle Incorporated in Al Matrix Composite by Vortex-Free High-Speed Stir Casting","authors":"Yinan Lu, Yunhui Du, Weiyi Zhang, Hongzhen Tan, Nan Zhang, Yi Luo, Peng Zhang","doi":"10.1007/s40962-024-01345-1","DOIUrl":null,"url":null,"abstract":"<p>Vortex-free high-speed stir casting (VFHSC) methodology can achieve uniform dispersion of particles in melt without air entrapment for fabricating particle reinforced composites, and it has been proved to be feasible for preparing micron-composites by this methodology. In this work, in order to study deeply on particles in nano-size magnitude in composites by this methodology, the preparation of 1.5 vol.% Nano-Al<sub>2</sub>O<sub>3p</sub>/Al–Cu–Mg–Si composite is also investigated. The proper stirring parameters for ideal particle dispersion are determined to prepare the materials. Porosity of the composite can be limited to 0.147 % under the VFHSC methodology. The composition and microstructure of ingots, including the incorporation of Al<sub>2</sub>O<sub>3</sub> particles as well as the morphology of precipitated phases, are examined by OM, XRD, SEM, TEM, HRTEM and EDS. The nano-particles are incorporated ideally in the matrix with restricted aggregation and sedimentation, and the well-bounded Al<sub>2</sub>O<sub>3</sub>–Al interface possesses semi-coherent interface. Moreover, the VFHSC 1.5 vol.% Nano-Al<sub>2</sub>O<sub>3p</sub>/Al–Cu–Mg–Si composite exhibits obvious strengthening, limited ductility reduction, higher hardness as well as better wear resistance than those of matrix, validating the efficacy of the VFHSC methodology on fabricating 1.5 vol.% Nano-Al<sub>2</sub>O<sub>3p</sub>/Al–Cu–Mg–Si composite. The work proves that incorporating nano-particles in Al matrix by VFHSC methodology is feasible and efficient. The work presented in this paper proposes a viable approach for the fabrication of nanocomposites using the stir casting method, thereby offering valuable insights for further research on stir casting technology.</p>","PeriodicalId":14231,"journal":{"name":"International Journal of Metalcasting","volume":"108 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Metalcasting","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s40962-024-01345-1","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Vortex-free high-speed stir casting (VFHSC) methodology can achieve uniform dispersion of particles in melt without air entrapment for fabricating particle reinforced composites, and it has been proved to be feasible for preparing micron-composites by this methodology. In this work, in order to study deeply on particles in nano-size magnitude in composites by this methodology, the preparation of 1.5 vol.% Nano-Al2O3p/Al–Cu–Mg–Si composite is also investigated. The proper stirring parameters for ideal particle dispersion are determined to prepare the materials. Porosity of the composite can be limited to 0.147 % under the VFHSC methodology. The composition and microstructure of ingots, including the incorporation of Al2O3 particles as well as the morphology of precipitated phases, are examined by OM, XRD, SEM, TEM, HRTEM and EDS. The nano-particles are incorporated ideally in the matrix with restricted aggregation and sedimentation, and the well-bounded Al2O3–Al interface possesses semi-coherent interface. Moreover, the VFHSC 1.5 vol.% Nano-Al2O3p/Al–Cu–Mg–Si composite exhibits obvious strengthening, limited ductility reduction, higher hardness as well as better wear resistance than those of matrix, validating the efficacy of the VFHSC methodology on fabricating 1.5 vol.% Nano-Al2O3p/Al–Cu–Mg–Si composite. The work proves that incorporating nano-particles in Al matrix by VFHSC methodology is feasible and efficient. The work presented in this paper proposes a viable approach for the fabrication of nanocomposites using the stir casting method, thereby offering valuable insights for further research on stir casting technology.
期刊介绍:
The International Journal of Metalcasting is dedicated to leading the transfer of research and technology for the global metalcasting industry. The quarterly publication keeps the latest developments in metalcasting research and technology in front of the scientific leaders in our global industry throughout the year. All papers published in the the journal are approved after a rigorous peer review process. The editorial peer review board represents three international metalcasting groups: academia (metalcasting professors), science and research (personnel from national labs, research and scientific institutions), and industry (leading technical personnel from metalcasting facilities).