{"title":"Origin of the Apparent Electric-Field Dependence of Electrostrictive Coefficients","authors":"Jiacheng Yu, Abdelali Zaki, Killian Mache, Omar Ibder, Sandrine Coste, Maud Barré, Philippe Lacorre, Pierre-Eymeric Janolin","doi":"10.1002/admt.202400066","DOIUrl":null,"url":null,"abstract":"<p>Electrostrictive materials exhibit a strain that is proportional to the square of the induced polarization. In linear dielectrics where the permittivity is constant, this electromechanical strain is also proportional to the square of the electric field. However, under increasing amplitudes of the driving field, the electromechanical strain sometimes saturates; the electrostrictive coefficients therefore appear to depend on the amplitude of the electric field used to measure them. Here, a methodology showing that this apparent field dependence is a consequence of neglecting higher-order electromechanical phenomena is presented. When these are taken into account, not only do the electrostrictive coefficients remain constant but the signs of the high-order coefficients enable the prediction of the saturation behavior from a single measurement. This approach is illustrated on both classical and non-classical (so-called “giant”) electrostrictors.</p>","PeriodicalId":7292,"journal":{"name":"Advanced Materials Technologies","volume":null,"pages":null},"PeriodicalIF":6.4000,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials Technologies","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/admt.202400066","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Electrostrictive materials exhibit a strain that is proportional to the square of the induced polarization. In linear dielectrics where the permittivity is constant, this electromechanical strain is also proportional to the square of the electric field. However, under increasing amplitudes of the driving field, the electromechanical strain sometimes saturates; the electrostrictive coefficients therefore appear to depend on the amplitude of the electric field used to measure them. Here, a methodology showing that this apparent field dependence is a consequence of neglecting higher-order electromechanical phenomena is presented. When these are taken into account, not only do the electrostrictive coefficients remain constant but the signs of the high-order coefficients enable the prediction of the saturation behavior from a single measurement. This approach is illustrated on both classical and non-classical (so-called “giant”) electrostrictors.
期刊介绍:
Advanced Materials Technologies Advanced Materials Technologies is the new home for all technology-related materials applications research, with particular focus on advanced device design, fabrication and integration, as well as new technologies based on novel materials. It bridges the gap between fundamental laboratory research and industry.