Solidification Processing of Reduced Graphene Oxide Dispersed Aluminum Composites by Squeeze Casting

IF 2.6 3区 材料科学 Q2 METALLURGY & METALLURGICAL ENGINEERING International Journal of Metalcasting Pub Date : 2024-05-10 DOI:10.1007/s40962-024-01348-y
A. G. Arsha, Omid Ghaderi, T. P. D. Rajan, P. K. Rohatgi
{"title":"Solidification Processing of Reduced Graphene Oxide Dispersed Aluminum Composites by Squeeze Casting","authors":"A. G. Arsha, Omid Ghaderi, T. P. D. Rajan, P. K. Rohatgi","doi":"10.1007/s40962-024-01348-y","DOIUrl":null,"url":null,"abstract":"<p>The present paper is on the processing of Al (A356)- reduced Graphene Oxide (rGO) composites by the squeeze casting technique to obtain improved mechanical and thermal properties. Reduced graphene oxide, a two-dimensional carbon allotrope with very high mechanical properties and thermal conductivity is used as a reinforcement in A356 aluminum alloy. Graphite was initially converted to rGO using the Hummers Method. 0.3 to 0.75 wt% weight percentages of rGO were incorporated into the aluminum alloy using a combination of stir mixing in semisolid state followed by squeeze casting, a hybrid method was employed to produce rGO reinforced A356 alloy matrix composite after applying mechanical stirring for uniform dispersion. Squeeze pressure was crucial for increasing the cooling rate to get finer microstructure, and eliminating the porosity. Reduced Graphene oxide uniformly within the Al 356 alloy matrix by applying both mechanical stirring for dispersion and squeeze pressure for rapid solidification and pore free casting. The squeeze cast Al 356-0.5%rGO composites after T6 heat treatment had an increase in tensile strength from 260 MPa for A356 alloy to 346 MPa, an increase in hardness 106 BHN to 130 BHN, and a reduction in coefficient of thermal expansion (CTE) from 21.7 × 10<sup>−6</sup>/°C to 10.8 × 10<sup>−6</sup>/°C at RT-50 °C. These results suggest potential applications of these composites in high performance industrial, automotive, and aerospace sectors.</p>","PeriodicalId":14231,"journal":{"name":"International Journal of Metalcasting","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Metalcasting","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s40962-024-01348-y","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

The present paper is on the processing of Al (A356)- reduced Graphene Oxide (rGO) composites by the squeeze casting technique to obtain improved mechanical and thermal properties. Reduced graphene oxide, a two-dimensional carbon allotrope with very high mechanical properties and thermal conductivity is used as a reinforcement in A356 aluminum alloy. Graphite was initially converted to rGO using the Hummers Method. 0.3 to 0.75 wt% weight percentages of rGO were incorporated into the aluminum alloy using a combination of stir mixing in semisolid state followed by squeeze casting, a hybrid method was employed to produce rGO reinforced A356 alloy matrix composite after applying mechanical stirring for uniform dispersion. Squeeze pressure was crucial for increasing the cooling rate to get finer microstructure, and eliminating the porosity. Reduced Graphene oxide uniformly within the Al 356 alloy matrix by applying both mechanical stirring for dispersion and squeeze pressure for rapid solidification and pore free casting. The squeeze cast Al 356-0.5%rGO composites after T6 heat treatment had an increase in tensile strength from 260 MPa for A356 alloy to 346 MPa, an increase in hardness 106 BHN to 130 BHN, and a reduction in coefficient of thermal expansion (CTE) from 21.7 × 10−6/°C to 10.8 × 10−6/°C at RT-50 °C. These results suggest potential applications of these composites in high performance industrial, automotive, and aerospace sectors.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用挤压铸造法凝固处理还原氧化石墨烯分散铝复合材料
本文介绍了通过挤压铸造技术加工铝(A356)-还原氧化石墨烯(rGO)复合材料,以获得更好的机械性能和热性能。还原氧化石墨烯是一种二维碳同素异形体,具有极高的机械性能和热导率,被用作 A356 铝合金的增强材料。最初采用 Hummers 法将石墨转化为 rGO。在铝合金中加入 0.3 至 0.75 wt% 重量百分比的 rGO,在半固态下进行搅拌混合,然后进行挤压铸造,在应用机械搅拌均匀分散后,采用混合方法生产出 rGO 增强 A356 合金基复合材料。挤压压力对提高冷却速度以获得更精细的微观结构和消除孔隙至关重要。通过机械搅拌使氧化石墨烯均匀地分散在 Al 356 合金基体中,并施加挤压力使其快速凝固和无孔隙浇铸。经过 T6 热处理后,挤压铸造的 Al 356-0.5%rGO 复合材料的抗拉强度从 A356 合金的 260 兆帕提高到 346 兆帕,硬度从 106 BHN 提高到 130 BHN,在 RT-50 °C 时的热膨胀系数 (CTE) 从 21.7 × 10-6/°C 降低到 10.8 × 10-6/°C。这些结果表明,这些复合材料有望应用于高性能工业、汽车和航空航天领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Metalcasting
International Journal of Metalcasting 工程技术-冶金工程
CiteScore
4.20
自引率
42.30%
发文量
174
审稿时长
>12 weeks
期刊介绍: The International Journal of Metalcasting is dedicated to leading the transfer of research and technology for the global metalcasting industry. The quarterly publication keeps the latest developments in metalcasting research and technology in front of the scientific leaders in our global industry throughout the year. All papers published in the the journal are approved after a rigorous peer review process. The editorial peer review board represents three international metalcasting groups: academia (metalcasting professors), science and research (personnel from national labs, research and scientific institutions), and industry (leading technical personnel from metalcasting facilities).
期刊最新文献
Effect of Austenitization Time on Corrosion and Wear Resistance in Austempered Ductile Iron From the Editor Numerical Simulation and Experimental Investigation of Microstructure Evolution and Flow Behavior in the Rheological Squeeze Casting Process of A356 Alloy The Effect of N Content on the Microstructure and Wear Resistance of Improved High-Carbon Chromium Bearing Steel Enhanced Classification of Refractory Coatings in Foundries: A VPCA-Based Machine Learning Approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1