The Influence of TiB2 Particles on the Artificial Aging Behavior of TiB2/Al–5Cu Composite

IF 2.6 3区 材料科学 Q2 METALLURGY & METALLURGICAL ENGINEERING International Journal of Metalcasting Pub Date : 2024-05-11 DOI:10.1007/s40962-024-01316-6
Yiwang Jia, Xiaojuan Shang, YunChe, Zhengcai Liu, Qibin Liu, Renguo Zhang, Sanquan Men, Xiang Li, Yongxiang Li
{"title":"The Influence of TiB2 Particles on the Artificial Aging Behavior of TiB2/Al–5Cu Composite","authors":"Yiwang Jia, Xiaojuan Shang, YunChe, Zhengcai Liu, Qibin Liu, Renguo Zhang, Sanquan Men, Xiang Li, Yongxiang Li","doi":"10.1007/s40962-024-01316-6","DOIUrl":null,"url":null,"abstract":"<p>This study investigated the artificial aging process of TiB<sub>2</sub>/Al–5Cu composite, with a focus on the influence of TiB<sub>2</sub> particles on the precipitation behavior of the composite. Additionally, a comparative analysis of the microhardness and tensile properties between the TiB<sub>2</sub>/Al–5Cu composite and the Al–5Cu alloy was conducted. X-ray Diffraction (XRD) analysis reveals that the TiB<sub>2</sub>/Al–5Cu composite consists of TiB<sub>2</sub> and Al<sub>2</sub>Cu phases. The Scanning Electron Microscopy (SEM) imagery demonstrates a predominantly cellular crystal composition in the composite. Notably, as the aging time progresses, there’s an initial increase followed by a subsequent decrease in the gray grain boundaries of the composite. Transmission Electron Microscopy (TEM) images uncover the presence of needle-like <i>θ</i> phase, TiB<sub>2</sub>, and dislocations within the TiB<sub>2</sub>/Al–5Cu composite. The incorporation of TiB<sub>2</sub> particles has emerged as a pivotal factor in significantly curtailing the artificial aging duration. With the peak hardness aging time determined at a mere 8 h, the TiB<sub>2</sub>/Al–5Cu composite showcases substantially higher hardness levels compared to the Al–5Cu base alloy. Remarkably, the optimum aging time for achieving the best mechanical properties in the composites is reduced from 20 to 8 h. Directly comparing the TiB<sub>2</sub>/Al–5Cu composite to the Al–5Cu alloy under peak aging conditions, notable enhancements in both yield strength (22%) and tensile strength (41%) are observed. Additionally, a slight increase in elongation is observed in the TiB<sub>2</sub>/Al–5Cu composite.</p>","PeriodicalId":14231,"journal":{"name":"International Journal of Metalcasting","volume":"43 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Metalcasting","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s40962-024-01316-6","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigated the artificial aging process of TiB2/Al–5Cu composite, with a focus on the influence of TiB2 particles on the precipitation behavior of the composite. Additionally, a comparative analysis of the microhardness and tensile properties between the TiB2/Al–5Cu composite and the Al–5Cu alloy was conducted. X-ray Diffraction (XRD) analysis reveals that the TiB2/Al–5Cu composite consists of TiB2 and Al2Cu phases. The Scanning Electron Microscopy (SEM) imagery demonstrates a predominantly cellular crystal composition in the composite. Notably, as the aging time progresses, there’s an initial increase followed by a subsequent decrease in the gray grain boundaries of the composite. Transmission Electron Microscopy (TEM) images uncover the presence of needle-like θ phase, TiB2, and dislocations within the TiB2/Al–5Cu composite. The incorporation of TiB2 particles has emerged as a pivotal factor in significantly curtailing the artificial aging duration. With the peak hardness aging time determined at a mere 8 h, the TiB2/Al–5Cu composite showcases substantially higher hardness levels compared to the Al–5Cu base alloy. Remarkably, the optimum aging time for achieving the best mechanical properties in the composites is reduced from 20 to 8 h. Directly comparing the TiB2/Al–5Cu composite to the Al–5Cu alloy under peak aging conditions, notable enhancements in both yield strength (22%) and tensile strength (41%) are observed. Additionally, a slight increase in elongation is observed in the TiB2/Al–5Cu composite.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
TiB2 颗粒对 TiB2/Al-5Cu 复合材料人工老化行为的影响
本研究调查了 TiB2/Al-5Cu 复合材料的人工老化过程,重点研究了 TiB2 颗粒对复合材料析出行为的影响。此外,还对 TiB2/Al-5Cu 复合材料和 Al-5Cu 合金的显微硬度和拉伸性能进行了对比分析。X 射线衍射 (XRD) 分析表明,TiB2/Al-5Cu 复合材料由 TiB2 和 Al2Cu 两相组成。扫描电子显微镜(SEM)图像显示,复合材料中主要是蜂窝状晶体成分。值得注意的是,随着老化时间的推移,复合材料的灰色晶界开始增加,随后逐渐减少。透射电子显微镜(TEM)图像显示,TiB2/Al-5Cu 复合材料中存在针状 θ 相、TiB2 和位错。TiB2 颗粒的加入是显著缩短人工老化时间的关键因素。与 Al-5Cu 基合金相比,TiB2/Al-5Cu 复合材料的峰值硬度老化时间仅为 8 小时,因此硬度水平大大提高。在峰值老化条件下,将 TiB2/Al-5Cu 复合材料与 Al-5Cu 合金进行直接比较,可观察到屈服强度(22%)和拉伸强度(41%)均有显著提高。此外,还观察到 TiB2/Al-5Cu 复合材料的伸长率略有增加。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Metalcasting
International Journal of Metalcasting 工程技术-冶金工程
CiteScore
4.20
自引率
42.30%
发文量
174
审稿时长
>12 weeks
期刊介绍: The International Journal of Metalcasting is dedicated to leading the transfer of research and technology for the global metalcasting industry. The quarterly publication keeps the latest developments in metalcasting research and technology in front of the scientific leaders in our global industry throughout the year. All papers published in the the journal are approved after a rigorous peer review process. The editorial peer review board represents three international metalcasting groups: academia (metalcasting professors), science and research (personnel from national labs, research and scientific institutions), and industry (leading technical personnel from metalcasting facilities).
期刊最新文献
Effect of Austenitization Time on Corrosion and Wear Resistance in Austempered Ductile Iron From the Editor Numerical Simulation and Experimental Investigation of Microstructure Evolution and Flow Behavior in the Rheological Squeeze Casting Process of A356 Alloy The Effect of N Content on the Microstructure and Wear Resistance of Improved High-Carbon Chromium Bearing Steel Enhanced Classification of Refractory Coatings in Foundries: A VPCA-Based Machine Learning Approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1