{"title":"Phosphine-coated Pd@Fe3O4 nanoparticles: a highly efficient and magnetically recyclable nanocatalyst for the arylation of aldehyde","authors":"Akram Ashouri, Somayeh Pourian, Behzad Nasiri","doi":"10.1007/s00706-024-03201-8","DOIUrl":null,"url":null,"abstract":"<p>Phosphine@Pd@Fe<sub>3</sub>O<sub>4</sub> nanomagnetic particles were synthesized through in situ or direct immobilization of the phosphine ligand on metal-coated Fe<sub>3</sub>O<sub>4</sub>. These separable heterogeneous nanoparticles were employed as highly efficient catalysts for the arylation of aldehydes using boron reagents, yielding up to 90% within 30 min. The synthesized catalysts were easily recovered through simple magnetic decantation and exhibited no significant decrease in activity upon reuse. The structure and morphology of the nanomagnetic particles were characterized using various techniques, including energy-dispersive X-ray spectroscopy, scanning electron microscopy, transmission electron microscopy, thermogravimetric analysis, differential thermal analysis, X-ray diffraction, vibrating-sample magnetometer analysis, and FT-IR spectroscopy.</p><h3 data-test=\"abstract-sub-heading\">Graphical abstract</h3>","PeriodicalId":19011,"journal":{"name":"Monatshefte für Chemie / Chemical Monthly","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Monatshefte für Chemie / Chemical Monthly","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00706-024-03201-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Phosphine@Pd@Fe3O4 nanomagnetic particles were synthesized through in situ or direct immobilization of the phosphine ligand on metal-coated Fe3O4. These separable heterogeneous nanoparticles were employed as highly efficient catalysts for the arylation of aldehydes using boron reagents, yielding up to 90% within 30 min. The synthesized catalysts were easily recovered through simple magnetic decantation and exhibited no significant decrease in activity upon reuse. The structure and morphology of the nanomagnetic particles were characterized using various techniques, including energy-dispersive X-ray spectroscopy, scanning electron microscopy, transmission electron microscopy, thermogravimetric analysis, differential thermal analysis, X-ray diffraction, vibrating-sample magnetometer analysis, and FT-IR spectroscopy.