{"title":"Sequential monitoring for conditional quantiles of general conditional heteroscedastic time series models","authors":"Sangyeol Lee, Chang Kyeom Kim","doi":"10.1002/asmb.2865","DOIUrl":null,"url":null,"abstract":"<p>In this study, we introduce an online monitoring procedure designed to sequentially detect change points in the conditional quantiles of location-scale time series models. This statistical process control issue holds great significance in risk management, particularly in measuring the value-at-risk or expected shortfall of financial assets. Our approach employs suitable detectors, including cumulative sum statistics. We then define a stopping rule and determine control limits based on asymptotic theorems to signal an anomaly. To further evaluate the proposed methods, we conduct a comprehensive empirical study analyzing various aspects of our monitoring procedures when applied to location-scale time series models. Additionally, we perform a real data analysis using the daily returns of the Korea Composite Stock Price Index (KOSPI) and EuroStoxx 50 indices to affirm the adequacy of the proposed monitoring procedures in real-world applications.</p>","PeriodicalId":55495,"journal":{"name":"Applied Stochastic Models in Business and Industry","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Stochastic Models in Business and Industry","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/asmb.2865","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, we introduce an online monitoring procedure designed to sequentially detect change points in the conditional quantiles of location-scale time series models. This statistical process control issue holds great significance in risk management, particularly in measuring the value-at-risk or expected shortfall of financial assets. Our approach employs suitable detectors, including cumulative sum statistics. We then define a stopping rule and determine control limits based on asymptotic theorems to signal an anomaly. To further evaluate the proposed methods, we conduct a comprehensive empirical study analyzing various aspects of our monitoring procedures when applied to location-scale time series models. Additionally, we perform a real data analysis using the daily returns of the Korea Composite Stock Price Index (KOSPI) and EuroStoxx 50 indices to affirm the adequacy of the proposed monitoring procedures in real-world applications.
期刊介绍:
ASMBI - Applied Stochastic Models in Business and Industry (formerly Applied Stochastic Models and Data Analysis) was first published in 1985, publishing contributions in the interface between stochastic modelling, data analysis and their applications in business, finance, insurance, management and production. In 2007 ASMBI became the official journal of the International Society for Business and Industrial Statistics (www.isbis.org). The main objective is to publish papers, both technical and practical, presenting new results which solve real-life problems or have great potential in doing so. Mathematical rigour, innovative stochastic modelling and sound applications are the key ingredients of papers to be published, after a very selective review process.
The journal is very open to new ideas, like Data Science and Big Data stemming from problems in business and industry or uncertainty quantification in engineering, as well as more traditional ones, like reliability, quality control, design of experiments, managerial processes, supply chains and inventories, insurance, econometrics, financial modelling (provided the papers are related to real problems). The journal is interested also in papers addressing the effects of business and industrial decisions on the environment, healthcare, social life. State-of-the art computational methods are very welcome as well, when combined with sound applications and innovative models.