Comprehensive Wheat Straw Processing with Deep Eutectic Solvent to Deliver Reducing Sugar

IF 3.1 3区 工程技术 Q3 ENERGY & FUELS BioEnergy Research Pub Date : 2024-05-09 DOI:10.1007/s12155-024-10763-2
Patrícia Joana Piedade, Veshal Venkat, Khaled W. A. Al-Shwafy, Mearg A. Aregawi, Gabriela Dudek, Mateusz Zygadło, Rafal Marcin Lukasik
{"title":"Comprehensive Wheat Straw Processing with Deep Eutectic Solvent to Deliver Reducing Sugar","authors":"Patrícia Joana Piedade, Veshal Venkat, Khaled W. A. Al-Shwafy, Mearg A. Aregawi, Gabriela Dudek, Mateusz Zygadło, Rafal Marcin Lukasik","doi":"10.1007/s12155-024-10763-2","DOIUrl":null,"url":null,"abstract":"<p>Pretreatment is one of the bottlenecks in the cost and energy-efficient biomass valorization. Deep eutectic solvents are potential candidates for being used to address these challenges. In this work, the deep eutectic solvent composed of choline chloride, and acetic acid was studied for its use in wheat straw fractionation. The pretreated biomass was assessed concerning the lignin and glucan content. Under optimized time and temperature conditions, defined using Doehlert matrix chemometric tool, of 3 h 47 min and 139.6 °C, the processed wheat straw contained as much as 42.5 ± 0.42 wt.% and 38.59 ± 1.26 wt.% of glucan and lignin contents, respectively. The need for biomass washing after the pretreatment with deep eutectic solvents and before the enzymatic hydrolysis step was also evaluated. The obtained enzymatic hydrolysis results, i.e., glucan to glucose yield of 27.13 ± 0.25 vs. 25.73 ± 0.08 for washed or unwashed biomass correspondingly, are equally good substrates. Fractal kinetic analysis of the data showed similar values of <i>k</i> and <i>h</i> for both glucose and xylose reactions between washed and unwashed biomass. This confirmed that biomass washing is an unnecessary step, which in turn opens room for biomass processing intensification.</p>","PeriodicalId":487,"journal":{"name":"BioEnergy Research","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BioEnergy Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12155-024-10763-2","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Pretreatment is one of the bottlenecks in the cost and energy-efficient biomass valorization. Deep eutectic solvents are potential candidates for being used to address these challenges. In this work, the deep eutectic solvent composed of choline chloride, and acetic acid was studied for its use in wheat straw fractionation. The pretreated biomass was assessed concerning the lignin and glucan content. Under optimized time and temperature conditions, defined using Doehlert matrix chemometric tool, of 3 h 47 min and 139.6 °C, the processed wheat straw contained as much as 42.5 ± 0.42 wt.% and 38.59 ± 1.26 wt.% of glucan and lignin contents, respectively. The need for biomass washing after the pretreatment with deep eutectic solvents and before the enzymatic hydrolysis step was also evaluated. The obtained enzymatic hydrolysis results, i.e., glucan to glucose yield of 27.13 ± 0.25 vs. 25.73 ± 0.08 for washed or unwashed biomass correspondingly, are equally good substrates. Fractal kinetic analysis of the data showed similar values of k and h for both glucose and xylose reactions between washed and unwashed biomass. This confirmed that biomass washing is an unnecessary step, which in turn opens room for biomass processing intensification.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用深共晶溶剂对小麦秸秆进行综合加工,以提供还原糖
预处理是成本和能效生物质资源化的瓶颈之一。深共晶溶剂是应对这些挑战的潜在候选物质。在这项工作中,研究了氯化胆碱和乙酸组成的深共晶溶剂在小麦秸秆分馏中的应用。对预处理后的生物质进行了木质素和葡聚糖含量评估。在使用 Doehlert 矩阵化学计量学工具确定的 3 小时 47 分钟和 139.6 °C 的优化时间和温度条件下,处理后的小麦秸秆的葡聚糖和木质素含量分别为 42.5 ± 0.42 重量百分比和 38.59 ± 1.26 重量百分比。此外,还评估了在使用深共晶溶剂进行预处理之后和酶水解步骤之前对生物质进行清洗的必要性。所获得的酶水解结果,即清洗或未清洗生物质的葡聚糖转化为葡萄糖的产率分别为 27.13 ± 0.25 和 25.73 ± 0.08,都是同样好的底物。数据的分形动力学分析表明,洗过和未洗过的生物质在葡萄糖和木糖反应中的 k 值和 h 值相似。这证实了生物质清洗是一个不必要的步骤,从而为生物质加工强化开辟了空间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
BioEnergy Research
BioEnergy Research ENERGY & FUELS-ENVIRONMENTAL SCIENCES
CiteScore
6.70
自引率
8.30%
发文量
174
审稿时长
3 months
期刊介绍: BioEnergy Research fills a void in the rapidly growing area of feedstock biology research related to biomass, biofuels, and bioenergy. The journal publishes a wide range of articles, including peer-reviewed scientific research, reviews, perspectives and commentary, industry news, and government policy updates. Its coverage brings together a uniquely broad combination of disciplines with a common focus on feedstock biology and science, related to biomass, biofeedstock, and bioenergy production.
期刊最新文献
Improvising Biodiesel Production from Scenedesmus dimorphus via Nutrient Starvation and Optimized Pretreatment Process Optimal Bio-Oil Production Using Triplochiton scleroxylon Sawdust Through Microwave-Assisted Pyrolysis Innovative Approach to Characterize Cheese Whey Anaerobic Digestion Using Combined Mechanistic and Machine Learning Models Design, Development, and Optimization of Sustainable Pyrolyzer for Biochar Production from Agricultural Crop Residue Study on the Co-pyrolysis Behavior of Copper Slag and Pine Sawdust and the Adsorption of Chromium
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1