{"title":"Deep optimized hybrid beamforming intelligent reflecting surface assisted UM-MIMO THz communication for 6G broad band connectivity","authors":"Ranjitham Govindasamy, Sathish Kumar Nagarajan, Jamuna Rani Muthu, Purushothaman Annadurai","doi":"10.1007/s11235-024-01157-y","DOIUrl":null,"url":null,"abstract":"<p>For 6G communications, the Ultra Massive Multiple Input Multiple Output (UM-MIMO) systems with Intelligent Reflecting Surface (IRS) assistance are capable since they can efficiently get beyond the limitations of restricted blockage and coverage. However, in the far field, a robust THz channel sparsity is unfavorable to spatial multiplexing, whereas excessive UM-MIMO and IRS dimensions extend the near field region. To address these issues, a hybrid beamforming IRS assisted UM-MIMO THz system with Deep Siamese Capsule Network is designed with the cascaded channel. The near and far field codebook-based beamforming is developed to model the proposed communication channel. The channel estimation is done based on the deep siamese capsule adaptive beluga whale neural network. The simulation results of the bit error rate, Normalized Mean Square Error (NMSE), spectral efficiency, sum rate, data rate, normalized channel gain, beamforming gain, and array gain loss shows that the proposed system achieves reliable performances compared with existing techniques. The suggested approach also demonstrates the outstanding adaptability to various network configurations and good scalability. The method provides a better channel estimation accuracy and less complexity which shows an NMSE of − 11.2 dB at an SNR of 10 dB.</p>","PeriodicalId":51194,"journal":{"name":"Telecommunication Systems","volume":"111 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Telecommunication Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11235-024-01157-y","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
For 6G communications, the Ultra Massive Multiple Input Multiple Output (UM-MIMO) systems with Intelligent Reflecting Surface (IRS) assistance are capable since they can efficiently get beyond the limitations of restricted blockage and coverage. However, in the far field, a robust THz channel sparsity is unfavorable to spatial multiplexing, whereas excessive UM-MIMO and IRS dimensions extend the near field region. To address these issues, a hybrid beamforming IRS assisted UM-MIMO THz system with Deep Siamese Capsule Network is designed with the cascaded channel. The near and far field codebook-based beamforming is developed to model the proposed communication channel. The channel estimation is done based on the deep siamese capsule adaptive beluga whale neural network. The simulation results of the bit error rate, Normalized Mean Square Error (NMSE), spectral efficiency, sum rate, data rate, normalized channel gain, beamforming gain, and array gain loss shows that the proposed system achieves reliable performances compared with existing techniques. The suggested approach also demonstrates the outstanding adaptability to various network configurations and good scalability. The method provides a better channel estimation accuracy and less complexity which shows an NMSE of − 11.2 dB at an SNR of 10 dB.
期刊介绍:
Telecommunication Systems is a journal covering all aspects of modeling, analysis, design and management of telecommunication systems. The journal publishes high quality articles dealing with the use of analytic and quantitative tools for the modeling, analysis, design and management of telecommunication systems covering:
Performance Evaluation of Wide Area and Local Networks;
Network Interconnection;
Wire, wireless, Adhoc, mobile networks;
Impact of New Services (economic and organizational impact);
Fiberoptics and photonic switching;
DSL, ADSL, cable TV and their impact;
Design and Analysis Issues in Metropolitan Area Networks;
Networking Protocols;
Dynamics and Capacity Expansion of Telecommunication Systems;
Multimedia Based Systems, Their Design Configuration and Impact;
Configuration of Distributed Systems;
Pricing for Networking and Telecommunication Services;
Performance Analysis of Local Area Networks;
Distributed Group Decision Support Systems;
Configuring Telecommunication Systems with Reliability and Availability;
Cost Benefit Analysis and Economic Impact of Telecommunication Systems;
Standardization and Regulatory Issues;
Security, Privacy and Encryption in Telecommunication Systems;
Cellular, Mobile and Satellite Based Systems.