{"title":"Smart remote sensing network for disaster management: an overview","authors":"Rami Ahmad","doi":"10.1007/s11235-024-01148-z","DOIUrl":null,"url":null,"abstract":"<p>Remote sensing technology is a vital component of disaster management, poised to revolutionize how we safeguard lives and property through enhanced prediction, mitigation, and recovery efforts. Disaster management hinges on continuous monitoring of various environments, from urban areas to forests and farms. Data from these observations are relayed to servers, where sophisticated processing algorithms forecast impending disasters. Remote sensing technology operates through a layered framework. The sensing layer acquires raw data, the network layer facilitates data transmission, and the data processing layer extracts meaningful insights. The application layer then leverages these insights to make informed decisions. Elevating the intelligence of remote sensing technology necessitates advancements across these layers. This paper delves into disaster management concepts and highlights the pivotal role played by remote sensing technology. It offers a comprehensive exploration of each layer within the remote sensing technology framework, detailing foundational principles, tools, and methodologies for enhancing intelligence. Addressing challenges inherent to this technology, the paper also presents future-oriented solutions. Furthermore, it examines the influence of wireless network infrastructure, alongside emerging technologies like the Internet of Things, cloud computing, virtual machines, and low-power wireless networks, in nurturing the evolution and sustainability of remote sensing technology.</p>","PeriodicalId":51194,"journal":{"name":"Telecommunication Systems","volume":"11 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Telecommunication Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11235-024-01148-z","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Remote sensing technology is a vital component of disaster management, poised to revolutionize how we safeguard lives and property through enhanced prediction, mitigation, and recovery efforts. Disaster management hinges on continuous monitoring of various environments, from urban areas to forests and farms. Data from these observations are relayed to servers, where sophisticated processing algorithms forecast impending disasters. Remote sensing technology operates through a layered framework. The sensing layer acquires raw data, the network layer facilitates data transmission, and the data processing layer extracts meaningful insights. The application layer then leverages these insights to make informed decisions. Elevating the intelligence of remote sensing technology necessitates advancements across these layers. This paper delves into disaster management concepts and highlights the pivotal role played by remote sensing technology. It offers a comprehensive exploration of each layer within the remote sensing technology framework, detailing foundational principles, tools, and methodologies for enhancing intelligence. Addressing challenges inherent to this technology, the paper also presents future-oriented solutions. Furthermore, it examines the influence of wireless network infrastructure, alongside emerging technologies like the Internet of Things, cloud computing, virtual machines, and low-power wireless networks, in nurturing the evolution and sustainability of remote sensing technology.
期刊介绍:
Telecommunication Systems is a journal covering all aspects of modeling, analysis, design and management of telecommunication systems. The journal publishes high quality articles dealing with the use of analytic and quantitative tools for the modeling, analysis, design and management of telecommunication systems covering:
Performance Evaluation of Wide Area and Local Networks;
Network Interconnection;
Wire, wireless, Adhoc, mobile networks;
Impact of New Services (economic and organizational impact);
Fiberoptics and photonic switching;
DSL, ADSL, cable TV and their impact;
Design and Analysis Issues in Metropolitan Area Networks;
Networking Protocols;
Dynamics and Capacity Expansion of Telecommunication Systems;
Multimedia Based Systems, Their Design Configuration and Impact;
Configuration of Distributed Systems;
Pricing for Networking and Telecommunication Services;
Performance Analysis of Local Area Networks;
Distributed Group Decision Support Systems;
Configuring Telecommunication Systems with Reliability and Availability;
Cost Benefit Analysis and Economic Impact of Telecommunication Systems;
Standardization and Regulatory Issues;
Security, Privacy and Encryption in Telecommunication Systems;
Cellular, Mobile and Satellite Based Systems.