Smart remote sensing network for disaster management: an overview

IF 1.7 4区 计算机科学 Q3 TELECOMMUNICATIONS Telecommunication Systems Pub Date : 2024-05-09 DOI:10.1007/s11235-024-01148-z
Rami Ahmad
{"title":"Smart remote sensing network for disaster management: an overview","authors":"Rami Ahmad","doi":"10.1007/s11235-024-01148-z","DOIUrl":null,"url":null,"abstract":"<p>Remote sensing technology is a vital component of disaster management, poised to revolutionize how we safeguard lives and property through enhanced prediction, mitigation, and recovery efforts. Disaster management hinges on continuous monitoring of various environments, from urban areas to forests and farms. Data from these observations are relayed to servers, where sophisticated processing algorithms forecast impending disasters. Remote sensing technology operates through a layered framework. The sensing layer acquires raw data, the network layer facilitates data transmission, and the data processing layer extracts meaningful insights. The application layer then leverages these insights to make informed decisions. Elevating the intelligence of remote sensing technology necessitates advancements across these layers. This paper delves into disaster management concepts and highlights the pivotal role played by remote sensing technology. It offers a comprehensive exploration of each layer within the remote sensing technology framework, detailing foundational principles, tools, and methodologies for enhancing intelligence. Addressing challenges inherent to this technology, the paper also presents future-oriented solutions. Furthermore, it examines the influence of wireless network infrastructure, alongside emerging technologies like the Internet of Things, cloud computing, virtual machines, and low-power wireless networks, in nurturing the evolution and sustainability of remote sensing technology.</p>","PeriodicalId":51194,"journal":{"name":"Telecommunication Systems","volume":"11 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Telecommunication Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11235-024-01148-z","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Remote sensing technology is a vital component of disaster management, poised to revolutionize how we safeguard lives and property through enhanced prediction, mitigation, and recovery efforts. Disaster management hinges on continuous monitoring of various environments, from urban areas to forests and farms. Data from these observations are relayed to servers, where sophisticated processing algorithms forecast impending disasters. Remote sensing technology operates through a layered framework. The sensing layer acquires raw data, the network layer facilitates data transmission, and the data processing layer extracts meaningful insights. The application layer then leverages these insights to make informed decisions. Elevating the intelligence of remote sensing technology necessitates advancements across these layers. This paper delves into disaster management concepts and highlights the pivotal role played by remote sensing technology. It offers a comprehensive exploration of each layer within the remote sensing technology framework, detailing foundational principles, tools, and methodologies for enhancing intelligence. Addressing challenges inherent to this technology, the paper also presents future-oriented solutions. Furthermore, it examines the influence of wireless network infrastructure, alongside emerging technologies like the Internet of Things, cloud computing, virtual machines, and low-power wireless networks, in nurturing the evolution and sustainability of remote sensing technology.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于灾害管理的智能遥感网络:概述
遥感技术是灾害管理的重要组成部分,有望通过加强预测、减灾和恢复工作,彻底改变我们保障生命和财产安全的方式。从城市地区到森林和农场,灾害管理依赖于对各种环境的持续监测。这些观测数据被传送到服务器上,由复杂的处理算法对即将发生的灾害进行预测。遥感技术通过分层框架运行。传感层获取原始数据,网络层促进数据传输,数据处理层提取有意义的见解。然后,应用层利用这些洞察力做出明智的决策。要提高遥感技术的智能化水平,就必须在这些层级上取得进步。本文深入探讨了灾害管理概念,并强调了遥感技术所发挥的关键作用。本文全面探讨了遥感技术框架内的每一层,详细介绍了增强智能的基本原则、工具和方法。针对该技术固有的挑战,论文还提出了面向未来的解决方案。此外,论文还探讨了无线网络基础设施以及物联网、云计算、虚拟机和低功耗无线网络等新兴技术对促进遥感技术发展和可持续性的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Telecommunication Systems
Telecommunication Systems 工程技术-电信学
CiteScore
5.40
自引率
8.00%
发文量
105
审稿时长
6.0 months
期刊介绍: Telecommunication Systems is a journal covering all aspects of modeling, analysis, design and management of telecommunication systems. The journal publishes high quality articles dealing with the use of analytic and quantitative tools for the modeling, analysis, design and management of telecommunication systems covering: Performance Evaluation of Wide Area and Local Networks; Network Interconnection; Wire, wireless, Adhoc, mobile networks; Impact of New Services (economic and organizational impact); Fiberoptics and photonic switching; DSL, ADSL, cable TV and their impact; Design and Analysis Issues in Metropolitan Area Networks; Networking Protocols; Dynamics and Capacity Expansion of Telecommunication Systems; Multimedia Based Systems, Their Design Configuration and Impact; Configuration of Distributed Systems; Pricing for Networking and Telecommunication Services; Performance Analysis of Local Area Networks; Distributed Group Decision Support Systems; Configuring Telecommunication Systems with Reliability and Availability; Cost Benefit Analysis and Economic Impact of Telecommunication Systems; Standardization and Regulatory Issues; Security, Privacy and Encryption in Telecommunication Systems; Cellular, Mobile and Satellite Based Systems.
期刊最新文献
Next-cell prediction with LSTM based on vehicle mobility for 5G mc-IoT slices Secure positioning of wireless sensor networks against wormhole attacks Safeguarding the Internet of Health Things: advancements, challenges, and trust-based solution Optimized task offloading for federated learning based on β-skeleton graph in edge computing Noise robust automatic speaker verification systems: review and analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1