{"title":"Theoretical semi-quantitative risk assessment methodology for tunnel design and construction processes","authors":"Ozgur Satici, Esra Satici","doi":"10.1007/s13198-024-02348-1","DOIUrl":null,"url":null,"abstract":"<p>All engineering projects involve risk management applications. Sometimes, risks cannot be effectively managed, leading to catastrophic consequences. Engineers must consciously or unconsciously manage these risks. Regardless of how risks are handled, project risks need to be systematically evaluated. Therefore, risk management procedures must be implemented in every project, particularly in geo-engineering projects, to mitigate undesirable consequences and achieve project objectives. However, the use of risk management procedures in underground excavation projects is not common. Numerous commonly employed underground excavation techniques lack assessment of risks, notably geotechnical risks. Most of them only evaluate rock structures and excavation stability in accordance with the geological structure. This paper combines a universal risk management perspective with the underground engineering discipline. The tunnel engineering design and construction steps were evaluated for uncertainties using Scenario Structuring Modeling techniques to identify both technical and non-technical risks associated with underground excavation. Bayesian Network models were employed to identify connections that contribute to risk. To achieve this, objective and quantitative risk assessment tables have been devised using risk management philosophy, in accordance with tunnel design engineering principles and Turkish procurement laws. The primary objective of this study is to increase awareness of the use of risk management processes in tunnel construction projects and introduce a systematic approach to risk assessment in tunnel engineering projects. As a result, a semi-quantitative risk assessment method based on risk management philosophy is proposed for tunnel design and construction for the first time, evaluating not only geotechnical and engineering risks but also human, financial, and various other sources of risks.</p>","PeriodicalId":14463,"journal":{"name":"International Journal of System Assurance Engineering and Management","volume":"66 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of System Assurance Engineering and Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s13198-024-02348-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
All engineering projects involve risk management applications. Sometimes, risks cannot be effectively managed, leading to catastrophic consequences. Engineers must consciously or unconsciously manage these risks. Regardless of how risks are handled, project risks need to be systematically evaluated. Therefore, risk management procedures must be implemented in every project, particularly in geo-engineering projects, to mitigate undesirable consequences and achieve project objectives. However, the use of risk management procedures in underground excavation projects is not common. Numerous commonly employed underground excavation techniques lack assessment of risks, notably geotechnical risks. Most of them only evaluate rock structures and excavation stability in accordance with the geological structure. This paper combines a universal risk management perspective with the underground engineering discipline. The tunnel engineering design and construction steps were evaluated for uncertainties using Scenario Structuring Modeling techniques to identify both technical and non-technical risks associated with underground excavation. Bayesian Network models were employed to identify connections that contribute to risk. To achieve this, objective and quantitative risk assessment tables have been devised using risk management philosophy, in accordance with tunnel design engineering principles and Turkish procurement laws. The primary objective of this study is to increase awareness of the use of risk management processes in tunnel construction projects and introduce a systematic approach to risk assessment in tunnel engineering projects. As a result, a semi-quantitative risk assessment method based on risk management philosophy is proposed for tunnel design and construction for the first time, evaluating not only geotechnical and engineering risks but also human, financial, and various other sources of risks.
期刊介绍:
This Journal is established with a view to cater to increased awareness for high quality research in the seamless integration of heterogeneous technologies to formulate bankable solutions to the emergent complex engineering problems.
Assurance engineering could be thought of as relating to the provision of higher confidence in the reliable and secure implementation of a system’s critical characteristic features through the espousal of a holistic approach by using a wide variety of cross disciplinary tools and techniques. Successful realization of sustainable and dependable products, systems and services involves an extensive adoption of Reliability, Quality, Safety and Risk related procedures for achieving high assurancelevels of performance; also pivotal are the management issues related to risk and uncertainty that govern the practical constraints encountered in their deployment. It is our intention to provide a platform for the modeling and analysis of large engineering systems, among the other aforementioned allied goals of systems assurance engineering, leading to the enforcement of performance enhancement measures. Achieving a fine balance between theory and practice is the primary focus. The Journal only publishes high quality papers that have passed the rigorous peer review procedure of an archival scientific Journal. The aim is an increasing number of submissions, wide circulation and a high impact factor.