A generalized product adoption model under random marketing conditions

IF 1.6 Q2 ENGINEERING, MULTIDISCIPLINARY International Journal of System Assurance Engineering and Management Pub Date : 2024-09-11 DOI:10.1007/s13198-024-02499-1
Shiva, Neetu Gupta, Anu G. Aggarwal
{"title":"A generalized product adoption model under random marketing conditions","authors":"Shiva, Neetu Gupta, Anu G. Aggarwal","doi":"10.1007/s13198-024-02499-1","DOIUrl":null,"url":null,"abstract":"<p>In marketing research, diffusion models are extensively utilized to predict the trend of new product adoption over time. These models are categorized based on their deterministic or stochastic characteristics. While deterministic models disregard the stochasticity of the adoption rate influenced by environmental and internal factors, we aim to address this limitation by proposing a generalized innovation diffusion model that accounts for such uncertainties. We validate our approach using the particle swarm optimization (PSO) technique on actual sales data from technological products. Our findings suggest that the proposed model outperforms existing diffusion models in forecasting accuracy.</p>","PeriodicalId":14463,"journal":{"name":"International Journal of System Assurance Engineering and Management","volume":"2 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of System Assurance Engineering and Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s13198-024-02499-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In marketing research, diffusion models are extensively utilized to predict the trend of new product adoption over time. These models are categorized based on their deterministic or stochastic characteristics. While deterministic models disregard the stochasticity of the adoption rate influenced by environmental and internal factors, we aim to address this limitation by proposing a generalized innovation diffusion model that accounts for such uncertainties. We validate our approach using the particle swarm optimization (PSO) technique on actual sales data from technological products. Our findings suggest that the proposed model outperforms existing diffusion models in forecasting accuracy.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
随机营销条件下的通用产品采用模型
在营销研究中,扩散模型被广泛用于预测新产品在一段时间内的采用趋势。这些模型根据其确定性和随机性特征进行分类。确定性模型忽略了受环境和内部因素影响的采用率的随机性,而我们的目标是通过提出一个考虑到此类不确定性的广义创新扩散模型来解决这一局限性。我们利用粒子群优化(PSO)技术在科技产品的实际销售数据上验证了我们的方法。我们的研究结果表明,所提出的模型在预测准确性方面优于现有的扩散模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.30
自引率
10.00%
发文量
252
期刊介绍: This Journal is established with a view to cater to increased awareness for high quality research in the seamless integration of heterogeneous technologies to formulate bankable solutions to the emergent complex engineering problems. Assurance engineering could be thought of as relating to the provision of higher confidence in the reliable and secure implementation of a system’s critical characteristic features through the espousal of a holistic approach by using a wide variety of cross disciplinary tools and techniques. Successful realization of sustainable and dependable products, systems and services involves an extensive adoption of Reliability, Quality, Safety and Risk related procedures for achieving high assurancelevels of performance; also pivotal are the management issues related to risk and uncertainty that govern the practical constraints encountered in their deployment. It is our intention to provide a platform for the modeling and analysis of large engineering systems, among the other aforementioned allied goals of systems assurance engineering, leading to the enforcement of performance enhancement measures. Achieving a fine balance between theory and practice is the primary focus. The Journal only publishes high quality papers that have passed the rigorous peer review procedure of an archival scientific Journal. The aim is an increasing number of submissions, wide circulation and a high impact factor.
期刊最新文献
Vision-based gait analysis to detect Parkinson’s disease using hybrid Harris hawks and Arithmetic optimization algorithm with Random Forest classifier Zero crossing point detection in a distorted sinusoidal signal using random forest classifier FL-XGBTC: federated learning inspired with XG-boost tuned classifier for YouTube spam content detection A generalized product adoption model under random marketing conditions Assessing e-learning platforms in higher education with reference to student satisfaction: a PLS-SEM approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1