Eddy Scale-wise Topology Underlying Turbulence Anisotropy Illuminates the Dissimilar Transport of Momentum, Heat, and Moisture in a Stably Stratified Katabatic Flow
{"title":"Eddy Scale-wise Topology Underlying Turbulence Anisotropy Illuminates the Dissimilar Transport of Momentum, Heat, and Moisture in a Stably Stratified Katabatic Flow","authors":"Xiaofeng Guo, Wei Yang, Degang Zhou","doi":"10.1007/s10546-024-00866-w","DOIUrl":null,"url":null,"abstract":"<p>The backdrop for this study is a knowledge gap about how turbulence anisotropy relates to the dissimilar transport of momentum and scalars. We use single-level measurements of turbulence over an alpine glacier for exploring the dissimilar transport of momentum, heat, and moisture in stably stratified katabatic flows. Our study is motivated by the need of addressing their flux dissimilarity from a fresh perspective of anisotropic motions of turbulence. Its objective is to promote new understanding of boundary-layer turbulence anisotropy as one possible factor in dissimilar behaviours between momentum and scalar transport over a sloping terrain. Specifically, the momentum–heat flux correlation (<span>\\({R}_{{F}_{uT}}\\)</span>) and the heat–moisture flux correlation (<span>\\({R}_{{F}_{Tq}}\\)</span>) coefficients vary across three different bulk states of kinetic anisotropy. Those states, identified using the barycentric Lumley map, suggest the predominance of two-component turbulence (being axisymmetric or not) and miscellaneous turbulence (whose topological shape is less salient). Miscellaneous turbulence typically bears a higher degree of the flux similarity between momentum and heat (i.e., <span>\\({R}_{{F}_{uT}}\\)</span> > 0.6) but a lower degree of that between heat and moisture (i.e., <span>\\(\\left|{R}_{{F}_{Tq}}\\right|\\)</span> < 0.7). The multi-resolution decomposition technique is then applied to identify larger-scale eddies of two-component topology, intermediate-scale eddies of oblate topology, and smaller-scale eddies of isotropic topology. Further analysis shows that an explicit change in eddy scale-wise topology is correlated not only with variations in <span>\\({R}_{{F}_{uT}}\\)</span> and <span>\\(\\left|{R}_{{F}_{Tq}}\\right|\\)</span> but with the dissimilar transport of momentum and scalars, so explaining a deviation from the Reynolds and the Lewis analogies in fluid mechanics.</p>","PeriodicalId":9153,"journal":{"name":"Boundary-Layer Meteorology","volume":"30 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Boundary-Layer Meteorology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s10546-024-00866-w","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The backdrop for this study is a knowledge gap about how turbulence anisotropy relates to the dissimilar transport of momentum and scalars. We use single-level measurements of turbulence over an alpine glacier for exploring the dissimilar transport of momentum, heat, and moisture in stably stratified katabatic flows. Our study is motivated by the need of addressing their flux dissimilarity from a fresh perspective of anisotropic motions of turbulence. Its objective is to promote new understanding of boundary-layer turbulence anisotropy as one possible factor in dissimilar behaviours between momentum and scalar transport over a sloping terrain. Specifically, the momentum–heat flux correlation (\({R}_{{F}_{uT}}\)) and the heat–moisture flux correlation (\({R}_{{F}_{Tq}}\)) coefficients vary across three different bulk states of kinetic anisotropy. Those states, identified using the barycentric Lumley map, suggest the predominance of two-component turbulence (being axisymmetric or not) and miscellaneous turbulence (whose topological shape is less salient). Miscellaneous turbulence typically bears a higher degree of the flux similarity between momentum and heat (i.e., \({R}_{{F}_{uT}}\) > 0.6) but a lower degree of that between heat and moisture (i.e., \(\left|{R}_{{F}_{Tq}}\right|\) < 0.7). The multi-resolution decomposition technique is then applied to identify larger-scale eddies of two-component topology, intermediate-scale eddies of oblate topology, and smaller-scale eddies of isotropic topology. Further analysis shows that an explicit change in eddy scale-wise topology is correlated not only with variations in \({R}_{{F}_{uT}}\) and \(\left|{R}_{{F}_{Tq}}\right|\) but with the dissimilar transport of momentum and scalars, so explaining a deviation from the Reynolds and the Lewis analogies in fluid mechanics.
期刊介绍:
Boundary-Layer Meteorology offers several publishing options: Research Letters, Research Articles, and Notes and Comments. The Research Letters section is designed to allow quick dissemination of new scientific findings, with an initial review period of no longer than one month. The Research Articles section offers traditional scientific papers that present results and interpretations based on substantial research studies or critical reviews of ongoing research. The Notes and Comments section comprises occasional notes and comments on specific topics with no requirement for rapid publication. Research Letters are limited in size to five journal pages, including no more than three figures, and cannot contain supplementary online material; Research Articles are generally fifteen to twenty pages in length with no more than fifteen figures; Notes and Comments are limited to ten journal pages and five figures. Authors submitting Research Letters should include within their cover letter an explanation of the need for rapid publication. More information regarding all publication formats can be found in the recent Editorial ‘Introducing Research Letters to Boundary-Layer Meteorology’.