Effects of Selective Laser Melting Process Parameters on Structural, Mechanical, Tribological and Corrosion Properties of CoCrFeMnNi High Entropy Alloy
Caner Bulut, Fatih Yıldız, Temel Varol, Gürkan Kaya, Tevfik Oğuzhan Ergüder
{"title":"Effects of Selective Laser Melting Process Parameters on Structural, Mechanical, Tribological and Corrosion Properties of CoCrFeMnNi High Entropy Alloy","authors":"Caner Bulut, Fatih Yıldız, Temel Varol, Gürkan Kaya, Tevfik Oğuzhan Ergüder","doi":"10.1007/s12540-024-01694-w","DOIUrl":null,"url":null,"abstract":"<div><p>The structural, tribological, mechanical, corrosion, and other properties of materials produced by laser-based powder bed fusion additive manufacturing methods are significantly affected by production parameters and strategies. Therefore, understanding and controlling the effects of the parameters used in the manufacturing process on the material properties is extremely important for determining optimum production conditions and for saving time and materials. This study aimed to determine the optimal laser parameter values for CoCrFeMnNi high-entropy alloy powders using the selective laser melting (SLM) method. The layer thickness was kept constant during experimentation. 5 different laser powers and 10 varying laser scanning speeds were tested, with hatch spacing from 30 to 90%. After determining the optimal laser parameters for SLM, prismatic samples were fabricated in different build orientations (0°, 45°, and 90°), and subsequently, their structural, mechanical, tribological, and corrosion properties were compared. Melt pool morphology could not be obtained at 20—40 and 60W laser powers and at all laser scanning speeds used at these laser powers. At 100 W laser power, 600 mm/s laser scanning speed, and 70% hatch spacing parameters, an ultimate tensile stress of 550 MPa and elongation of 48% were obtained. Among the samples produced in different build orientations, the sample produced with a 0° build orientation exhibited the highest relative density (99.94%), the highest microhardness (201.2 HV<sub>0.1</sub>), the lowest friction coefficient (0.7025), and the lowest wear and corrosion rates (0.7875 mpy). Additionally, SLM parameters were evaluated to have a significant impact on the performance of all properties of the samples.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":703,"journal":{"name":"Metals and Materials International","volume":"30 11","pages":"2982 - 3004"},"PeriodicalIF":3.3000,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s12540-024-01694-w.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metals and Materials International","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12540-024-01694-w","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The structural, tribological, mechanical, corrosion, and other properties of materials produced by laser-based powder bed fusion additive manufacturing methods are significantly affected by production parameters and strategies. Therefore, understanding and controlling the effects of the parameters used in the manufacturing process on the material properties is extremely important for determining optimum production conditions and for saving time and materials. This study aimed to determine the optimal laser parameter values for CoCrFeMnNi high-entropy alloy powders using the selective laser melting (SLM) method. The layer thickness was kept constant during experimentation. 5 different laser powers and 10 varying laser scanning speeds were tested, with hatch spacing from 30 to 90%. After determining the optimal laser parameters for SLM, prismatic samples were fabricated in different build orientations (0°, 45°, and 90°), and subsequently, their structural, mechanical, tribological, and corrosion properties were compared. Melt pool morphology could not be obtained at 20—40 and 60W laser powers and at all laser scanning speeds used at these laser powers. At 100 W laser power, 600 mm/s laser scanning speed, and 70% hatch spacing parameters, an ultimate tensile stress of 550 MPa and elongation of 48% were obtained. Among the samples produced in different build orientations, the sample produced with a 0° build orientation exhibited the highest relative density (99.94%), the highest microhardness (201.2 HV0.1), the lowest friction coefficient (0.7025), and the lowest wear and corrosion rates (0.7875 mpy). Additionally, SLM parameters were evaluated to have a significant impact on the performance of all properties of the samples.
期刊介绍:
Metals and Materials International publishes original papers and occasional critical reviews on all aspects of research and technology in materials engineering: physical metallurgy, materials science, and processing of metals and other materials. Emphasis is placed on those aspects of the science of materials that are concerned with the relationships among the processing, structure and properties (mechanical, chemical, electrical, electrochemical, magnetic and optical) of materials. Aspects of processing include the melting, casting, and fabrication with the thermodynamics, kinetics and modeling.