Innovative Solutions Towards Achieving Comprehensive Restoration of Petroleum-Contaminated Soils

IF 0.6 4区 工程技术 Q4 ENERGY & FUELS Chemistry and Technology of Fuels and Oils Pub Date : 2024-05-11 DOI:10.1007/s10553-024-01683-0
Fang Shen, Yunfei Feng, Yingwei Di, Xiaojun Jiang
{"title":"Innovative Solutions Towards Achieving Comprehensive Restoration of Petroleum-Contaminated Soils","authors":"Fang Shen, Yunfei Feng, Yingwei Di, Xiaojun Jiang","doi":"10.1007/s10553-024-01683-0","DOIUrl":null,"url":null,"abstract":"<p>Composting is an effective and cost-efficient engineering technique used to treat agricultural waste. It involves the conversion of organic materials into stable compounds and the rapid degradation of organic matter through microorganisms found in feces. The resulting high-quality fertilizer can improve soil physical, chemical, and biological properties. However, the excessive use of heavy metals in livestock breeding can restrict the use of livestock manure for composting. Long-term application of compost products containing heavy metals can cause irreversible damage to farmland soil environments. This paper summarizes several important factors that affect the detoxification of heavy metals in composting and discusses the passivation effect of typical heavy metal passivators. The detoxification mechanism of heavy metals in compost is summarized from two perspectives: the humification effect of heavy metals and the environmental interface effects of microorganisms. This paper provides a foundation for improving the agronomic use value of avian manure aerobic composting products and for studying heavy metal passivation in compost. The application of aerobic composting in the remediation of petroleum-contaminated soil exhibits a dual impact, primarily focusing on the synergistic effects on petroleum hydrocarbon degradation and soil improvement. Such research endeavors are poised to offer innovative solutions towards achieving comprehensive restoration of petroleum-contaminated soils.</p>","PeriodicalId":9908,"journal":{"name":"Chemistry and Technology of Fuels and Oils","volume":"16 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry and Technology of Fuels and Oils","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10553-024-01683-0","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Composting is an effective and cost-efficient engineering technique used to treat agricultural waste. It involves the conversion of organic materials into stable compounds and the rapid degradation of organic matter through microorganisms found in feces. The resulting high-quality fertilizer can improve soil physical, chemical, and biological properties. However, the excessive use of heavy metals in livestock breeding can restrict the use of livestock manure for composting. Long-term application of compost products containing heavy metals can cause irreversible damage to farmland soil environments. This paper summarizes several important factors that affect the detoxification of heavy metals in composting and discusses the passivation effect of typical heavy metal passivators. The detoxification mechanism of heavy metals in compost is summarized from two perspectives: the humification effect of heavy metals and the environmental interface effects of microorganisms. This paper provides a foundation for improving the agronomic use value of avian manure aerobic composting products and for studying heavy metal passivation in compost. The application of aerobic composting in the remediation of petroleum-contaminated soil exhibits a dual impact, primarily focusing on the synergistic effects on petroleum hydrocarbon degradation and soil improvement. Such research endeavors are poised to offer innovative solutions towards achieving comprehensive restoration of petroleum-contaminated soils.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
实现石油污染土壤全面恢复的创新解决方案
堆肥是一种用于处理农业废弃物的有效且具有成本效益的工程技术。它包括将有机物转化为稳定的化合物,并通过粪便中的微生物快速降解有机物。由此产生的优质肥料可以改善土壤的物理、化学和生物特性。然而,在畜牧业中过量使用重金属会限制将畜禽粪便用于堆肥。长期施用含有重金属的堆肥产品会对农田土壤环境造成不可逆转的破坏。本文总结了影响堆肥中重金属解毒的几个重要因素,并讨论了典型重金属钝化剂的钝化效果。从重金属的腐殖化效应和微生物的环境界面效应两个角度总结了堆肥中重金属的解毒机理。本文为提高禽粪好氧堆肥产品的农艺利用价值和研究堆肥中的重金属钝化作用奠定了基础。好氧堆肥在石油污染土壤修复中的应用具有双重影响,主要集中在石油烃降解和土壤改良的协同效应上。此类研究工作有望为实现石油污染土壤的全面修复提供创新解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Chemistry and Technology of Fuels and Oils
Chemistry and Technology of Fuels and Oils 工程技术-工程:化工
CiteScore
0.90
自引率
16.70%
发文量
119
审稿时长
1.0 months
期刊介绍: Chemistry and Technology of Fuels and Oils publishes reports on improvements in the processing of petroleum and natural gas and cracking and refining techniques for the production of high-quality fuels, oils, greases, specialty fluids, additives and synthetics. The journal includes timely articles on the demulsification, desalting, and desulfurizing of crude oil; new flow plans for refineries; platforming, isomerization, catalytic reforming, and alkylation processes for obtaining aromatic hydrocarbons and high-octane gasoline; methods of producing ethylene, acetylene, benzene, acids, alcohols, esters, and other compounds from petroleum, as well as hydrogen from natural gas and liquid products.
期刊最新文献
Studying the Accumulation Characteristics of Crude Oil in an Oil Formation in the Aspect of Predicting the Effectiveness of Crude Oil Exploration Research on Oil Production Forecasting Method of Tight Oil Reservoir Based on Grey Correlation Method Research on the Physical Strength of Surface Conductor Soil Under Deep Jet Drilling Characterization of Pore Structure and Two-Phase Seepage Pattern in Sandstone Conglomerate Based on CT Scanning Pile Penetration Analysis and Suggestions of Jacket Platform Skirt Pile Sinking
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1