Neutron irradiation influence on high-power thyristor device under fusion environment

IF 3.6 1区 物理与天体物理 Q1 NUCLEAR SCIENCE & TECHNOLOGY Nuclear Science and Techniques Pub Date : 2024-05-09 DOI:10.1007/s41365-024-01433-1
Wei Tong, Hua Li, Meng Xu, Zhi-Quan Song, Bo Chen
{"title":"Neutron irradiation influence on high-power thyristor device under fusion environment","authors":"Wei Tong, Hua Li, Meng Xu, Zhi-Quan Song, Bo Chen","doi":"10.1007/s41365-024-01433-1","DOIUrl":null,"url":null,"abstract":"<p>Because of their economy and applicability, high-power thyristor devices are widely used in the power supply systems for large fusion devices. When high-dose neutrons produced by deuterium–tritium (D–T) fusion reactions are irradiated on a thyristor device for a long time, the electrical characteristics of the device change, which may eventually cause irreversible damage. In this study, with the thyristor switch of the commutation circuit in the quench protection system (QPS) of a fusion device as the study object, the relationship between the internal physical structure and external electrical parameters of the irradiated thyristor is established. Subsequently, a series of targeted thyristor physical simulations and neutron irradiation experiments are conducted to verify the accuracy of the theoretical analysis. In addition, the effect of irradiated thyristor electrical characteristic changes on the entire QPS is studied by accurate simulation, providing valuable guidelines for the maintenance and renovation of the QPS.</p>","PeriodicalId":19177,"journal":{"name":"Nuclear Science and Techniques","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Science and Techniques","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1007/s41365-024-01433-1","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Because of their economy and applicability, high-power thyristor devices are widely used in the power supply systems for large fusion devices. When high-dose neutrons produced by deuterium–tritium (D–T) fusion reactions are irradiated on a thyristor device for a long time, the electrical characteristics of the device change, which may eventually cause irreversible damage. In this study, with the thyristor switch of the commutation circuit in the quench protection system (QPS) of a fusion device as the study object, the relationship between the internal physical structure and external electrical parameters of the irradiated thyristor is established. Subsequently, a series of targeted thyristor physical simulations and neutron irradiation experiments are conducted to verify the accuracy of the theoretical analysis. In addition, the effect of irradiated thyristor electrical characteristic changes on the entire QPS is studied by accurate simulation, providing valuable guidelines for the maintenance and renovation of the QPS.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
核聚变环境下中子辐照对大功率晶闸管器件的影响
大功率晶闸管器件因其经济性和适用性,被广泛应用于大型核聚变装置的供电系统中。当氘-氚(D-T)聚变反应产生的高剂量中子长时间辐照晶闸管器件时,器件的电气特性会发生变化,最终可能造成不可逆的损坏。本研究以核聚变装置淬火保护系统(QPS)中换向电路的晶闸管开关为研究对象,建立了辐照晶闸管内部物理结构与外部电气参数之间的关系。随后,进行了一系列有针对性的晶闸管物理模拟和中子辐照实验,以验证理论分析的准确性。此外,还通过精确模拟研究了辐照晶闸管电气特性变化对整个 QPS 的影响,为 QPS 的维护和改造提供了有价值的指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nuclear Science and Techniques
Nuclear Science and Techniques 物理-核科学技术
CiteScore
5.10
自引率
39.30%
发文量
141
审稿时长
5 months
期刊介绍: Nuclear Science and Techniques (NST) reports scientific findings, technical advances and important results in the fields of nuclear science and techniques. The aim of this periodical is to stimulate cross-fertilization of knowledge among scientists and engineers working in the fields of nuclear research. Scope covers the following subjects: • Synchrotron radiation applications, beamline technology; • Accelerator, ray technology and applications; • Nuclear chemistry, radiochemistry, radiopharmaceuticals, nuclear medicine; • Nuclear electronics and instrumentation; • Nuclear physics and interdisciplinary research; • Nuclear energy science and engineering.
期刊最新文献
Properties of the phase diagram from the Nambu-Jona-Lasino model with a scalar-vector interaction In-beam gamma rays of CSNS Back-n characterized by black resonance filter Analysis of level structure and monopole effects in Ca isotopes Highly coupled off-resonance lattice design in diffraction-limited light sources Possibility of reaching the predicted center of the “island of stability” via the radioactive beam-induced fusion reactions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1