{"title":"Aerodynamic interactions of blunt bodies free-flying in hypersonic flow","authors":"Patrick M. Seltner, Sebastian Willems, Ali Gülhan","doi":"10.1007/s00348-024-03818-9","DOIUrl":null,"url":null,"abstract":"<div><p>This paper takes a new look at how the aerodynamic interactions of multiple bodies in high-speed flow affect their motion behaviors. The influence of the body shape and orientation on aerodynamic and stability behavior in the case of shock–shock and wake–shock interactions is the focus of this publication. Experiments were performed in the hypersonic wind tunnel H2K at the German Aerospace Center (DLR) in Cologne. Free-flight tests with tandem arrangements of spheres and cubes were performed with a synchronized dropping of both objects at various initial conditions of relative streamwise and vertical distance as well as pitch angle. A high-speed stereo-tracking captured the model motions during free-flight, and high-speed schlieren videography provided documentation of the flow topology. Based on the measured 6-degrees-of-freedom (6DoF) motion data, aerodynamic coefficients were determined. As a result, the final lateral velocity of trailing cubes is found to be many times greater than that of spheres regarding shock-wave surfing. For rotating cubes, the results showed that stable shock-wave surfing can become possible over an increasingly wide range of initial positions. This study has identified that the trailing drag coefficient of two axially aligned objects varies strongly with their relative streamwise distance. Furthermore, it was shown that the wake is a region of stability for downstream objects.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":554,"journal":{"name":"Experiments in Fluids","volume":"65 6","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00348-024-03818-9.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experiments in Fluids","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s00348-024-03818-9","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This paper takes a new look at how the aerodynamic interactions of multiple bodies in high-speed flow affect their motion behaviors. The influence of the body shape and orientation on aerodynamic and stability behavior in the case of shock–shock and wake–shock interactions is the focus of this publication. Experiments were performed in the hypersonic wind tunnel H2K at the German Aerospace Center (DLR) in Cologne. Free-flight tests with tandem arrangements of spheres and cubes were performed with a synchronized dropping of both objects at various initial conditions of relative streamwise and vertical distance as well as pitch angle. A high-speed stereo-tracking captured the model motions during free-flight, and high-speed schlieren videography provided documentation of the flow topology. Based on the measured 6-degrees-of-freedom (6DoF) motion data, aerodynamic coefficients were determined. As a result, the final lateral velocity of trailing cubes is found to be many times greater than that of spheres regarding shock-wave surfing. For rotating cubes, the results showed that stable shock-wave surfing can become possible over an increasingly wide range of initial positions. This study has identified that the trailing drag coefficient of two axially aligned objects varies strongly with their relative streamwise distance. Furthermore, it was shown that the wake is a region of stability for downstream objects.
期刊介绍:
Experiments in Fluids examines the advancement, extension, and improvement of new techniques of flow measurement. The journal also publishes contributions that employ existing experimental techniques to gain an understanding of the underlying flow physics in the areas of turbulence, aerodynamics, hydrodynamics, convective heat transfer, combustion, turbomachinery, multi-phase flows, and chemical, biological and geological flows. In addition, readers will find papers that report on investigations combining experimental and analytical/numerical approaches.