Density functional theory beyond the Born–Oppenheimer approximation: exact mapping onto an electronically non-interacting Kohn–Sham molecule

IF 2.9 Q3 CHEMISTRY, PHYSICAL Electronic Structure Pub Date : 2024-05-12 DOI:10.1088/2516-1075/ad45d5
Emmanuel Fromager and Benjamin Lasorne
{"title":"Density functional theory beyond the Born–Oppenheimer approximation: exact mapping onto an electronically non-interacting Kohn–Sham molecule","authors":"Emmanuel Fromager and Benjamin Lasorne","doi":"10.1088/2516-1075/ad45d5","DOIUrl":null,"url":null,"abstract":"This work presents an alternative, general, and in-principle exact extension of electronic Kohn–Sham density functional theory (KS-DFT) to the fully quantum-mechanical molecular problem. Unlike in existing multi-component or exact-factorization-based DFTs of electrons and nuclei, both nuclear and electronic densities are mapped onto a fictitious electronically non-interacting molecule (referred to as KS molecule), where the electrons still interact with the nuclei. Moreover, in the present molecular KS-DFT, no assumption is made about the mathematical form (exactly factorized or not) of the molecular wavefunction. By expanding the KS molecular wavefunction à la Born–Huang, we obtain a self-consistent set of ‘KS beyond Born–Oppenheimer’ electronic equations coupled to nuclear equations that describe nuclei interacting among themselves and with non-interacting electrons. An exact adiabatic connection formula is derived for the Hartree-exchange-correlation energy of the electrons within the molecule and, on that basis, a practical adiabatic density-functional approximation is proposed and discussed.","PeriodicalId":42419,"journal":{"name":"Electronic Structure","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Structure","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2516-1075/ad45d5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This work presents an alternative, general, and in-principle exact extension of electronic Kohn–Sham density functional theory (KS-DFT) to the fully quantum-mechanical molecular problem. Unlike in existing multi-component or exact-factorization-based DFTs of electrons and nuclei, both nuclear and electronic densities are mapped onto a fictitious electronically non-interacting molecule (referred to as KS molecule), where the electrons still interact with the nuclei. Moreover, in the present molecular KS-DFT, no assumption is made about the mathematical form (exactly factorized or not) of the molecular wavefunction. By expanding the KS molecular wavefunction à la Born–Huang, we obtain a self-consistent set of ‘KS beyond Born–Oppenheimer’ electronic equations coupled to nuclear equations that describe nuclei interacting among themselves and with non-interacting electrons. An exact adiabatic connection formula is derived for the Hartree-exchange-correlation energy of the electrons within the molecule and, on that basis, a practical adiabatic density-functional approximation is proposed and discussed.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
超越玻恩-奥本海默近似的密度泛函理论:电子非相互作用科恩-沙姆分子的精确映射
这项研究提出了电子科恩-沙姆密度泛函理论(Kohn-Sham density functional theory,KS-DFT)的替代性、一般性和原理上的精确扩展,以解决完全量子力学的分子问题。与现有的电子和原子核的多分量或基于精确因子的 DFT 不同,核密度和电子密度都映射到一个虚构的电子不相互作用分子(称为 KS 分子)上,其中电子仍然与原子核相互作用。此外,在目前的分子 KS-DFT 中,并没有假设分子波函数的数学形式(精确因式化与否)。通过像玻恩-黄那样扩展 KS 分子波函数,我们得到了一组自洽的 "超越玻恩-奥本海默的 KS "电子方程组,它们与描述原子核之间以及原子核与非相互作用电子之间相互作用的核方程组相耦合。在此基础上,我们提出并讨论了一种实用的绝热密度函数近似。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.70
自引率
11.50%
发文量
46
期刊最新文献
Improving the precision of work-function calculations within plane-wave density functional theory Self-similarity of quantum transport in graphene using electrostatic gate and substrate Facilities and practices for linear response Hubbard parameters U and J in Abinit Approaching periodic systems in ensemble density functional theory via finite one-dimensional models Regulating electronic structure of anionic oxygen by Ti4+ doping to stabilize layered Li-rich oxide cathodes for Li-ion batteries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1