Facilities and practices for linear response Hubbard parameters U and J in Abinit

IF 2.9 Q3 CHEMISTRY, PHYSICAL Electronic Structure Pub Date : 2024-07-25 DOI:10.1088/2516-1075/ad610f
Lórien MacEnulty, Matteo Giantomassi, Bernard Amadon, Gian-Marco Rignanese and David D O’Regan
{"title":"Facilities and practices for linear response Hubbard parameters U and J in Abinit","authors":"Lórien MacEnulty, Matteo Giantomassi, Bernard Amadon, Gian-Marco Rignanese and David D O’Regan","doi":"10.1088/2516-1075/ad610f","DOIUrl":null,"url":null,"abstract":"Members of the density functional theory (DFT)+U family of functionals are increasingly prevalent methods of addressing errors intrinsic to (semi-) local exchange-correlation functionals at minimum computational cost, but require their parameters U and J to be calculated in situ for a given system of interest, simulation scheme, and runtime parameters. The self-consistent field (SCF) linear response approach offers ab initio acquisition of the U and has recently been extended to compute the J analogously, which measures localized errors related to exchange-like effects. We introduce a renovated post-processor, the lrUJ utility, together with this detailed best-practices guide, to enable users of the popular, open-source Abinit first-principles simulation suite to engage easily with in situ Hubbard parameters and streamline their incorporation into material simulations of interest. Features of this utility, which may also interest users and developers of other DFT codes, include n-degree polynomial regression, error analysis, Python plotting facilities, didactic documentation, and avenues for further developments. In this technical introduction and guide, we place particular emphasis on the intricacies and potential pitfalls introduced by the projector augmented wave method, SCF mixing schemes, and non-linear response, several of which are translatable to DFT+U(+J) implementations in other packages.","PeriodicalId":42419,"journal":{"name":"Electronic Structure","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Structure","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2516-1075/ad610f","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Members of the density functional theory (DFT)+U family of functionals are increasingly prevalent methods of addressing errors intrinsic to (semi-) local exchange-correlation functionals at minimum computational cost, but require their parameters U and J to be calculated in situ for a given system of interest, simulation scheme, and runtime parameters. The self-consistent field (SCF) linear response approach offers ab initio acquisition of the U and has recently been extended to compute the J analogously, which measures localized errors related to exchange-like effects. We introduce a renovated post-processor, the lrUJ utility, together with this detailed best-practices guide, to enable users of the popular, open-source Abinit first-principles simulation suite to engage easily with in situ Hubbard parameters and streamline their incorporation into material simulations of interest. Features of this utility, which may also interest users and developers of other DFT codes, include n-degree polynomial regression, error analysis, Python plotting facilities, didactic documentation, and avenues for further developments. In this technical introduction and guide, we place particular emphasis on the intricacies and potential pitfalls introduced by the projector augmented wave method, SCF mixing schemes, and non-linear response, several of which are translatable to DFT+U(+J) implementations in other packages.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
阿比尼特中线性响应哈伯德参数 U 和 J 的设施和做法
密度泛函理论(DFT)+U 系列函数的成员是以最低计算成本解决(半)局部交换相关函数固有误差的日益普遍的方法,但需要针对给定的相关系统、模拟方案和运行时参数就地计算其参数 U 和 J。自洽场(SCF)线性响应方法提供了 U 的原初获取,最近又扩展到类似地计算 J,以测量与类交换效应相关的局部误差。我们介绍了一种新的后处理器 lrUJ 工具,以及这份详细的最佳实践指南,使流行的开源 Abinit 第一性原理模拟套件的用户能够轻松使用原位哈伯德参数,并简化将其纳入相关材料模拟的过程。其他 DFT 代码的用户和开发人员可能也会对该工具的功能感兴趣,其中包括 n 度多项式回归、误差分析、Python 绘图工具、教学文档以及进一步开发的途径。在本技术介绍和指南中,我们特别强调了投影仪增强波方法、SCF 混合方案和非线性响应所带来的复杂性和潜在隐患,其中有几项可转化为其他软件包中的 DFT+U(+J) 实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.70
自引率
11.50%
发文量
46
期刊最新文献
Improving the precision of work-function calculations within plane-wave density functional theory Self-similarity of quantum transport in graphene using electrostatic gate and substrate Facilities and practices for linear response Hubbard parameters U and J in Abinit Approaching periodic systems in ensemble density functional theory via finite one-dimensional models Regulating electronic structure of anionic oxygen by Ti4+ doping to stabilize layered Li-rich oxide cathodes for Li-ion batteries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1