Facundo Alvarez, Tiago Magalhães da Silva Freitas, Tiago Octavio Begot, Bruno da Silveira Prudente, Omar Loyola-Bartra, Daniel Paiva Silva
{"title":"Seasonal effects on the potential spatial distribution of Amazonian migratory catfishes","authors":"Facundo Alvarez, Tiago Magalhães da Silva Freitas, Tiago Octavio Begot, Bruno da Silveira Prudente, Omar Loyola-Bartra, Daniel Paiva Silva","doi":"10.1007/s11160-024-09862-2","DOIUrl":null,"url":null,"abstract":"<p>The Amazon basin, spanning approximately 540,000 km<sup>2</sup>, exhibits distinct fluviometric surfaces that differentiate between the dry and rainy seasons. This seasonality, along with hydrological connectivity and the creation of new habitats during the rainy season, significantly promotes the migration, reproduction, and feeding of potamodromous fishes. To estimate the realized niches of species, species distribution models (SDMs) employ the extrapolation of environmental predictors and species occurrence data. Our objective was to compare the spatial distribution of migratory fish species in the Amazon basin using SDMs based on variables characterizing the dry season, rainy season, and a combination of both. All evaluated treatments demonstrated high performance and exhibited different distribution ranges in the applied SDMs, particularly when combining environmental variables with occurrence data during the rainy season. These findings support the hypothesis that spatial distribution is influenced by seasonality. The increased fluviometric surface and enhanced connectivity of the rainy season favor both longitudinal and lateral migrations of Amazonian migratory catfishes. Moreover, the spatial distribution reveals four critical spatial overlap (CSO) regions with higher population densities regardless of the season. These CSOs primarily coincide with the Amazon alluvial plain, which exhibits the highest rates of endemism, species richness, and abundance of organisms. Considering the discontinuous and heterogeneous nature of fluviometry when performing niche modeling processes is pivotal, although SDMs applied in the Amazon generally ignore such regional seasonality.</p>","PeriodicalId":21181,"journal":{"name":"Reviews in Fish Biology and Fisheries","volume":"32 1","pages":""},"PeriodicalIF":5.9000,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reviews in Fish Biology and Fisheries","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s11160-024-09862-2","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FISHERIES","Score":null,"Total":0}
引用次数: 0
Abstract
The Amazon basin, spanning approximately 540,000 km2, exhibits distinct fluviometric surfaces that differentiate between the dry and rainy seasons. This seasonality, along with hydrological connectivity and the creation of new habitats during the rainy season, significantly promotes the migration, reproduction, and feeding of potamodromous fishes. To estimate the realized niches of species, species distribution models (SDMs) employ the extrapolation of environmental predictors and species occurrence data. Our objective was to compare the spatial distribution of migratory fish species in the Amazon basin using SDMs based on variables characterizing the dry season, rainy season, and a combination of both. All evaluated treatments demonstrated high performance and exhibited different distribution ranges in the applied SDMs, particularly when combining environmental variables with occurrence data during the rainy season. These findings support the hypothesis that spatial distribution is influenced by seasonality. The increased fluviometric surface and enhanced connectivity of the rainy season favor both longitudinal and lateral migrations of Amazonian migratory catfishes. Moreover, the spatial distribution reveals four critical spatial overlap (CSO) regions with higher population densities regardless of the season. These CSOs primarily coincide with the Amazon alluvial plain, which exhibits the highest rates of endemism, species richness, and abundance of organisms. Considering the discontinuous and heterogeneous nature of fluviometry when performing niche modeling processes is pivotal, although SDMs applied in the Amazon generally ignore such regional seasonality.
期刊介绍:
The subject matter is focused on include evolutionary biology, zoogeography, taxonomy, including biochemical taxonomy and stock identification, genetics and genetic manipulation, physiology, functional morphology, behaviour, ecology, fisheries assessment, development, exploitation and conservation. however, reviews will be published from any field of fish biology where the emphasis is placed on adaptation, function or exploitation in the whole organism.