Wet-spinning of reduced graphene oxide composite fiber by mechanical synergistic effect with graphene scrolling method

IF 8.1 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Materials Today Advances Pub Date : 2024-05-03 DOI:10.1016/j.mtadv.2024.100491
Chae-Lin Park, Du Won Kim, Sujin Ryu, Joonmyung Choi, Young-Chul Song, Keon Jung Kim, Sang Won Lee, Seongjae Oh, Doyoung Kim, Young Hwan Bae, Hyun Kim, Seon-Jin Choi, Jaehoon Ko, Shi Hyeong Kim, Hyunsoo Kim
{"title":"Wet-spinning of reduced graphene oxide composite fiber by mechanical synergistic effect with graphene scrolling method","authors":"Chae-Lin Park, Du Won Kim, Sujin Ryu, Joonmyung Choi, Young-Chul Song, Keon Jung Kim, Sang Won Lee, Seongjae Oh, Doyoung Kim, Young Hwan Bae, Hyun Kim, Seon-Jin Choi, Jaehoon Ko, Shi Hyeong Kim, Hyunsoo Kim","doi":"10.1016/j.mtadv.2024.100491","DOIUrl":null,"url":null,"abstract":"Carbon-based fibers have attracted attention in various field owing to their exceptional properties, including high tensile strength, thermal stability, and electrical conductivity. In particular, graphene-based high-strength fibers are promising materials in aerospace, automotive, and marine sectors. Recently, the hybrid fiber, consisting of carbon nanotubes (CNTs) and graphene with enhanced toughness was reported by deflecting cracks and enabling high deformation. However, complex synthesis and structural optimization of composite fiber with two different materials make challenge for mass production. Here, we introduce a novel graphene composite fiber, consisting of reduced graphene oxide (rGO) and scrolled rGO (SrGO), showing remarkable toughness. A multidimensional-state solution with 2D rGO and 1D SrGO was obtained by using a simple sonication technique. Mass production of high-toughness composite fibers was achieved via wet-spinning, with enhanced toughness attributed to microstructure optimization by controlling the SrGO ratio. Additionally, the use of poly(vinyl alcohol) (PVA) as the matrix facilitated high deformation, resulting in a remarkable 90.7 % increase in mechanical toughness without complex composite material synthesis.","PeriodicalId":48495,"journal":{"name":"Materials Today Advances","volume":null,"pages":null},"PeriodicalIF":8.1000,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Advances","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.mtadv.2024.100491","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Carbon-based fibers have attracted attention in various field owing to their exceptional properties, including high tensile strength, thermal stability, and electrical conductivity. In particular, graphene-based high-strength fibers are promising materials in aerospace, automotive, and marine sectors. Recently, the hybrid fiber, consisting of carbon nanotubes (CNTs) and graphene with enhanced toughness was reported by deflecting cracks and enabling high deformation. However, complex synthesis and structural optimization of composite fiber with two different materials make challenge for mass production. Here, we introduce a novel graphene composite fiber, consisting of reduced graphene oxide (rGO) and scrolled rGO (SrGO), showing remarkable toughness. A multidimensional-state solution with 2D rGO and 1D SrGO was obtained by using a simple sonication technique. Mass production of high-toughness composite fibers was achieved via wet-spinning, with enhanced toughness attributed to microstructure optimization by controlling the SrGO ratio. Additionally, the use of poly(vinyl alcohol) (PVA) as the matrix facilitated high deformation, resulting in a remarkable 90.7 % increase in mechanical toughness without complex composite material synthesis.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用机械协同效应和石墨烯卷绕法湿法纺制还原氧化石墨烯复合纤维
碳基纤维因其卓越的性能,包括高拉伸强度、热稳定性和导电性,在各个领域都备受关注。尤其是石墨烯基高强度纤维,是航空航天、汽车和船舶领域前景广阔的材料。最近,有报道称由碳纳米管(CNT)和石墨烯组成的混合纤维通过偏转裂缝和实现高变形来增强韧性。然而,两种不同材料复合纤维的复杂合成和结构优化给大规模生产带来了挑战。在此,我们介绍一种新型石墨烯复合纤维,它由还原型氧化石墨烯(rGO)和卷曲型氧化石墨烯(SrGO)组成,具有显著的韧性。通过使用简单的超声技术,我们获得了具有二维 rGO 和一维 SrGO 的多维态溶液。通过湿法纺丝实现了高韧性复合纤维的批量生产,通过控制 SrGO 的比例实现了微结构的优化,从而提高了韧性。此外,使用聚乙烯醇(PVA)作为基体可促进高变形,从而在不合成复杂复合材料的情况下显著提高了 90.7% 的机械韧性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Materials Today Advances
Materials Today Advances MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
14.30
自引率
2.00%
发文量
116
审稿时长
32 days
期刊介绍: Materials Today Advances is a multi-disciplinary, open access journal that aims to connect different communities within materials science. It covers all aspects of materials science and related disciplines, including fundamental and applied research. The focus is on studies with broad impact that can cross traditional subject boundaries. The journal welcomes the submissions of articles at the forefront of materials science, advancing the field. It is part of the Materials Today family and offers authors rigorous peer review, rapid decisions, and high visibility.
期刊最新文献
Not only a matter of disorder in I-WP minimal surface-based photonic networks: Diffusive structural color in Sternotomis amabilis longhorn beetles Magnetic bilayer qubits: A bipartite quantum system Unraveling the role of relaxation and rejuvenation on the structure and deformation behavior of the Zr-based bulk metallic glass Vit105 Acoustic tweezer-driven assembly and anti-cancer property of microporous magnesium gallate Nanostructured proton-exchange membranes from self-cross-linking perfluoroalkyl-free block-co-polymers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1