P. Yu. Minaev, A. S. Pozanenko, S. A. Grebenev, I. V. Chelovekov, N. S. Pankov, A. A. Khabibullin, R. Ya. Inasaridze, A. O. Novichonok
{"title":"GRB 231115A—a Magnetar Giant Flare in the M82 Galaxy","authors":"P. Yu. Minaev, A. S. Pozanenko, S. A. Grebenev, I. V. Chelovekov, N. S. Pankov, A. A. Khabibullin, R. Ya. Inasaridze, A. O. Novichonok","doi":"10.1134/S1063773724600152","DOIUrl":null,"url":null,"abstract":"<p>The results of a study of the short gamma-ray burst GRB 231115A in the X-ray and gamma-ray ranges are presented, based on data from the INTEGRAL and <i>Fermi</i> space observatories. The source of the burst is localized by the IBIS/ISGRI telescope of INTEGRAL observatory with an accuracy of <span>\\({\\leq}1.\\!\\!^{\\prime}5\\)</span>, it is located in the Cigar Galaxy (M 82). Early follow-up observations of the burst localization region were carried out in the optical range with the 36-cm telescope of the ISON-Kitab observatory and the 70-cm telescope AS-32 of the Abastumani Astrophysical Observatory. The optical emission has not been detected. The proximity of the host galaxy (<span>\\(D_{L}\\simeq 3.5\\)</span> Mpc) significantly limits energetics of the event (<span>\\(E_{\\textrm{iso}}\\ \\sim\\ 10^{45}\\)</span> erg) and allows us to interpret the burst as a giant flare of a previously unknown soft gamma repeater (SGR) which is an extreme manifestation of the activity of a highly magnetized neutron star (magnetar). This conclusion is confirmed by the energy spectrum atypically hard for cosmological gamma-ray bursts, as well as the absence of optical afterglow and gravitational wave signal, which should have been detected in the LIGO/Virgo/KAGRA experiments if the burst was caused by a merger of binary neutron stars. The location of the burst in the <span>\\(E_{p,i}{-}E_{\\textrm{iso}}\\)</span> and <span>\\(T_{90,i}{-}EH\\)</span> diagrams also suggests that GRB 231115A was a magnetar giant flare. This is the first well-localized giant flare of an extragalactic SGR.</p>","PeriodicalId":55443,"journal":{"name":"Astronomy Letters-A Journal of Astronomy and Space Astrophysics","volume":"50 1","pages":"1 - 24"},"PeriodicalIF":1.1000,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astronomy Letters-A Journal of Astronomy and Space Astrophysics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S1063773724600152","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
The results of a study of the short gamma-ray burst GRB 231115A in the X-ray and gamma-ray ranges are presented, based on data from the INTEGRAL and Fermi space observatories. The source of the burst is localized by the IBIS/ISGRI telescope of INTEGRAL observatory with an accuracy of \({\leq}1.\!\!^{\prime}5\), it is located in the Cigar Galaxy (M 82). Early follow-up observations of the burst localization region were carried out in the optical range with the 36-cm telescope of the ISON-Kitab observatory and the 70-cm telescope AS-32 of the Abastumani Astrophysical Observatory. The optical emission has not been detected. The proximity of the host galaxy (\(D_{L}\simeq 3.5\) Mpc) significantly limits energetics of the event (\(E_{\textrm{iso}}\ \sim\ 10^{45}\) erg) and allows us to interpret the burst as a giant flare of a previously unknown soft gamma repeater (SGR) which is an extreme manifestation of the activity of a highly magnetized neutron star (magnetar). This conclusion is confirmed by the energy spectrum atypically hard for cosmological gamma-ray bursts, as well as the absence of optical afterglow and gravitational wave signal, which should have been detected in the LIGO/Virgo/KAGRA experiments if the burst was caused by a merger of binary neutron stars. The location of the burst in the \(E_{p,i}{-}E_{\textrm{iso}}\) and \(T_{90,i}{-}EH\) diagrams also suggests that GRB 231115A was a magnetar giant flare. This is the first well-localized giant flare of an extragalactic SGR.
期刊介绍:
Astronomy Letters is an international peer reviewed journal that publishes the results of original research on all aspects of modern astronomy and astrophysics including high energy astrophysics, cosmology, space astronomy, theoretical astrophysics, radio astronomy, extragalactic astronomy, stellar astronomy, and investigation of the Solar system.