A Machine Learning Approach for Analyzing Residual Stress Distribution in Cold Spray Coatings

IF 3.2 3区 材料科学 Q2 MATERIALS SCIENCE, COATINGS & FILMS Journal of Thermal Spray Technology Pub Date : 2024-05-08 DOI:10.1007/s11666-024-01776-6
Rosa Huaraca Aparco, Fidelia Tapia-Tadeo, Yajhayda Bellido Ascarza, Alexis León Ramírez, Yersi-Luis Huamán-Romaní, Calixto Cañari Otero
{"title":"A Machine Learning Approach for Analyzing Residual Stress Distribution in Cold Spray Coatings","authors":"Rosa Huaraca Aparco,&nbsp;Fidelia Tapia-Tadeo,&nbsp;Yajhayda Bellido Ascarza,&nbsp;Alexis León Ramírez,&nbsp;Yersi-Luis Huamán-Romaní,&nbsp;Calixto Cañari Otero","doi":"10.1007/s11666-024-01776-6","DOIUrl":null,"url":null,"abstract":"<div><p>This study establishes a machine learning (ML) model utilizing the expectation-maximization approach to predict maximum residual stresses, encompassing both tensile and compressive states, in the cold spraying process across various substrates. The main feature of the ML algorithm lies in its two-step iterative process, where the Expectation (E step) refines latent variable estimates, and the Maximization (M step) optimizes the model’s parameters, aligning them with the data. Based on the results, regression analysis highlighted the predictive capabilities of the proposed model for tensile and compressive residual stresses, exhibiting root mean square error values of 8.8 and 3.5%, along with determination coefficient values of 0.915 and 0.968, respectively, indicating higher prediction performance in the compression mode. This suggests higher predictability for residual stress within the depth of material’s body. Moreover, analyzing low residual stress levels underscored the significant impact of substrate and particle mechanical strength on prediction performance, whereas higher residual stress levels highlighted the strong influence of thermal conductivity. This correlation suggests that high stresses during the cold spray process generate more heat, thereby emphasizing the crucial role of thermal conductivity in predicting resultant residual stresses. Furthermore, a notable trend emerges as tensile stress increases, spotlighting the augmented influence of processing parameters in the prediction process. Conversely, at elevated compressive stresses, material properties’ weight factors assume a vital role in predictions. These findings offer insights into the intricate interplay between processing parameters and materials properties in determining resultant residual stresses during cold spraying.</p></div>","PeriodicalId":679,"journal":{"name":"Journal of Thermal Spray Technology","volume":"33 5","pages":"1292 - 1307"},"PeriodicalIF":3.2000,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Thermal Spray Technology","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11666-024-01776-6","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, COATINGS & FILMS","Score":null,"Total":0}
引用次数: 0

Abstract

This study establishes a machine learning (ML) model utilizing the expectation-maximization approach to predict maximum residual stresses, encompassing both tensile and compressive states, in the cold spraying process across various substrates. The main feature of the ML algorithm lies in its two-step iterative process, where the Expectation (E step) refines latent variable estimates, and the Maximization (M step) optimizes the model’s parameters, aligning them with the data. Based on the results, regression analysis highlighted the predictive capabilities of the proposed model for tensile and compressive residual stresses, exhibiting root mean square error values of 8.8 and 3.5%, along with determination coefficient values of 0.915 and 0.968, respectively, indicating higher prediction performance in the compression mode. This suggests higher predictability for residual stress within the depth of material’s body. Moreover, analyzing low residual stress levels underscored the significant impact of substrate and particle mechanical strength on prediction performance, whereas higher residual stress levels highlighted the strong influence of thermal conductivity. This correlation suggests that high stresses during the cold spray process generate more heat, thereby emphasizing the crucial role of thermal conductivity in predicting resultant residual stresses. Furthermore, a notable trend emerges as tensile stress increases, spotlighting the augmented influence of processing parameters in the prediction process. Conversely, at elevated compressive stresses, material properties’ weight factors assume a vital role in predictions. These findings offer insights into the intricate interplay between processing parameters and materials properties in determining resultant residual stresses during cold spraying.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
分析冷喷涂层残余应力分布的机器学习方法
本研究建立了一个机器学习(ML)模型,利用期望最大化方法预测冷喷涂过程中各种基材的最大残余应力,包括拉伸和压缩状态。ML 算法的主要特点在于其两步迭代过程,其中期望(E 步)完善潜在变量估计值,最大化(M 步)优化模型参数,使其与数据保持一致。结果表明,回归分析凸显了所提模型对拉伸和压缩残余应力的预测能力,均方根误差值分别为 8.8% 和 3.5%,确定系数分别为 0.915 和 0.968,表明压缩模式下的预测性能更高。这表明材料本体深度内的残余应力具有更高的可预测性。此外,对低残余应力水平的分析强调了基体和颗粒机械强度对预测性能的重要影响,而较高的残余应力水平则突出了热导率的强大影响。这种相关性表明,冷喷过程中的高应力会产生更多热量,从而强调了热导率在预测残余应力方面的关键作用。此外,随着拉伸应力的增加,出现了一个明显的趋势,凸显了加工参数在预测过程中的重要影响。相反,在压应力升高时,材料特性的权重因子在预测中起着至关重要的作用。这些发现有助于深入了解加工参数与材料特性之间错综复杂的相互作用,从而确定冷喷涂过程中产生的残余应力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Thermal Spray Technology
Journal of Thermal Spray Technology 工程技术-材料科学:膜
CiteScore
5.20
自引率
25.80%
发文量
198
审稿时长
2.6 months
期刊介绍: From the scientific to the practical, stay on top of advances in this fast-growing coating technology with ASM International''s Journal of Thermal Spray Technology. Critically reviewed scientific papers and engineering articles combine the best of new research with the latest applications and problem solving. A service of the ASM Thermal Spray Society (TSS), the Journal of Thermal Spray Technology covers all fundamental and practical aspects of thermal spray science, including processes, feedstock manufacture, and testing and characterization. The journal contains worldwide coverage of the latest research, products, equipment and process developments, and includes technical note case studies from real-time applications and in-depth topical reviews.
期刊最新文献
Professor Pierre Léon Fauchais: “Passion and Courage” (1937–2024) Microstructural Evolution and Tribological Responses of Heat-Treated AlFeCoNiCr–Cr3C2 Coating In Situ Measurement of Track Shape in Cold Spray Deposits Design and Development of Cost-Effective Equipment for Tribological Evaluation of Thermally Sprayed Abradable Coatings Impact of Hydroxyapatite Powder Particle Size on Mechanical and Electrochemical Properties of Flame-Sprayed Coatings for Titanium Implants
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1